
HAL Id: hal-03402845
https://hal.archives-ouvertes.fr/hal-03402845

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MUSE: Multimodal Separators for Efficient Route
Planning in Transportation Networks

Mohamed Amine Falek, Cristel Pelsser, Sébastien Julien, Fabrice Theoleyre

To cite this version:
Mohamed Amine Falek, Cristel Pelsser, Sébastien Julien, Fabrice Theoleyre. MUSE: Multimodal Sep-
arators for Efficient Route Planning in Transportation Networks. Transportation Science, INFORMS,
2021, �10.1287/xxxx.0000.0000�. �hal-03402845�

https://hal.archives-ouvertes.fr/hal-03402845
https://hal.archives-ouvertes.fr

TRANSPORTATION SCIENCE
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0041-1655 |eissn 1526-5447 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

© 0000 INFORMS

1

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

2

MUSE: Multimodal Separators for Efficient Route3

Planning in Transportation Networks4

Amine Mohamed Falek5

Technology & Strategy group, 4 rue de Dublin, 67300 Schiltigheim, France.6

falek@unistra.fr - a.falek@technologyandstrategy.com7

Cristel Pelsser8

ICube Lab, CNRS/University of Strasbourg, Pole API, Boulevard Sebastien Brant, 67412 Illkirch, France.9

pelsser@unistra.fr10

Sebastien Julien11

Technology & Strategy group, 4 rue de Dublin, 67300 Schiltigheim, France.12

s.julien@technologyandstrategy.com13

Fabrice Theoleyre14

ICube Lab, CNRS/University of Strasbourg, Pole API, Boulevard Sebastien Brant, 67412 Illkirch, France.15

theoleyre@unistra.fr http://www.theoleyre.eu16

Many algorithms compute shortest-path queries in mere microseconds on continental-scale networks. Most
solutions are, however, tailored to either road or public transit networks in isolation. To fully exploit the
transportation infrastructure, multimodal algorithms are sought to compute shortest-paths combining var-
ious modes of transportation. Nonetheless, current solutions still lack performance to efficiently handle
interactive queries under realistic network conditions where traffic jams, public transit cancelations, or delays
often occur. We present MUSE, a new multimodal algorithm based on graph separators to compute shortest
travel time paths. It partitions the network into independent, smaller regions, enabling fast and scalable
preprocessing. The partition is common to all modes and independent of traffic conditions so that the pre-
processing is only executed once. MUSE relies on a state automaton that describes the sequence of modes to
constrain the shortest path during the preprocessing and the online phase. The support of new sequences of
mobility modes only requires the preprocessing of the cliques, independently for each partition. We also aug-
ment our algorithm with heuristics during the query phase to achieve further speedups with minimal effect
on correctness. We provide experimental results on France’s multimodal network containing the pedestrian,
road, bicycle, and public transit networks.

Key words : multimodal shortest path; graph separators, route planning; time-dependent graph

17

18

19

1. Introduction20

The well-being of the economy and even social infrastructure is highly reliant on an efficient trans-21

portation network. According to the U.S Department of Transportation (DOT 2015), 40% of all22

traveled passenger-kilometers consists of commuting. While commuting distances are increasing,23

average speeds are, however, decreasing due to steadily rising congestion. By 2015, the average24

commuter typically spent 40 hours stuck in traffic, costing $121 billion annually. For decades,25

personal-vehicle travel has been, and remains, the dominating trend: 105 million American com-26

muters rely mostly on driving while the remaining 32 million depend on all other transportation27

1

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
2 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

modes. Nevertheless, although accounting for only 5% of the overall commute trips, public transit28

is vital to alleviating congestion. The same report indicates that if public transit users in major29

metropolitan areas of the united states suddenly reverted to driving, congestion is estimated to30

increase by 24% and cost an additional $17 billion annually. Fortunately, over the past two decades,31

public transportation thrived with a registered 25% increase in public transit ridership. Enhanced32

access to information significantly improved transit networks and steered urban populations to33

consider better alternatives to their private cars.34

Multimodal algorithms are thereby of increasing importance for route planning to exploit the35

diversity of transportation infrastructure fully. A central problem to route planning is the ability to36

compute shortest paths efficiently. Most commonly, the shortest path denotes that which requires37

minimal travel time to reach the destination. In that regard, researchers accomplished significant38

progress, and as a result, the literature is abundant (Bast et al. 2016). Early algorithms such as39

Dijkstra’s (Dijkstra 1959) solve the one-to-many shortest path problem by greedily exploring the40

graph data structure that abstracts the transportation network. However, for large networks with41

up to several millions of vertices, Dijkstra’s algorithm becomes too slow for practical applications.42

Therefore, newer algorithms tend to split the problem into two parts (i) in a first offline phase,43

known as preprocessing, additional data is extracted from the graph based on some of its unique44

features, (ii) in a second online phase, known as the query, the preprocessed data is used to speed45

up a variant of Dijkstra’s algorithm. Ultimately, efficiency is measured as a tradeoff between query46

time, preprocessing time, and memory requirements.47

The 9th Dimacs Challenge (Demetrescu, Goldberg, and Johnson 2009) was a competition on the48

shortest path problem and renowned for the significant contribution it brought to the field of route49

planning in road networks. Algorithms such as Arc Flags (Hilger et al. 2009), Reach (Goldberg,50

Kaplan, and Werneck 2006), Transit Node Routing (Bast, Funke, and Matijevic 2006) and Highway51

Hierarchies (Delling et al. 2006) layed the foundations for modern algorithms.52

For instance, the commercial solution TomTom uses a variant of Arc Flags (Schilling 2012) and53

the Open Source Route Machine (OSRM) (Huber and Rust 2016) runs a faster version of Highway54

Hierarchies known as Contraction Hiearchies (Geisberger et al. 2008). Bast (2009) summarizes the55

key ingredients behind many algorithms that achieved speedups of several orders of magnitude.56

Techniques such as goal direction, contraction, and hierarchy stem from fundamental properties57

observed in road networks. For that reason, the same techniques proved to be much less effective58

when applied to public transit networks, which are time-dependent and lack hierarchy at the59

intracity level (Bast 2009).60

The time-expanded model (Pyrga et al. 2004, 2008) is an event-based graph used to model transit61

networks. Mainly, a single station is abstracted with many vertices, one for each event (arrival,62

departure, and transfer). Thereby, techniques such as bidirectional search become challenging:63

although the target station is known, the specific target vertex is not, and the backward search is64

not trivial. Another approach, the time-dependent model (Brodal and Jacob 2004) is more compact65

and treats each station as a unique vertex in the graph, consequently providing better performance.66

Nonetheless, the same speedup techniques applied to road networks are orders of magnitude lower67

when applied to transit networks, as Bauer et al. (Bauer, Delling, and Wagner 2011) experimentally68

show. Unlike road networks, transit networks are modeled according to timetable information69

(Müller-Hannemann et al. 2007). Instead of a graph structure, some of the fastest algorithms70

such as Round-Based Public Transit Routing (RAPTOR) (Delling, Pajor, and Werneck 2014) and71

Connection Scan Algorithm (CSA) (Dibbelt et al. 2013) operate directly on the timetable data.72

The structural differences between road and public transit networks represent the main challenge73

for efficient multimodal algorithms. Moreover, modal constraints, which are typically imposed by74

users, must be dealt with to compute the shortest path with a valid sequence of transportation75

types. We tackle this problem aiming for a practical solution with fast queries (few milliseconds)76

for interactive applications and fast preprocessing times (few minutes) to account for traffic, unex-77

pected congestion, and transit delays.78

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 3

Customizable Route Planning (CRP) (Delling et al. 2011a) is a road network algorithm based79

on multilevel separators. Initially, the graph is partitioned, aiming to minimize the number of80

boundary vertices. Then, an overlay is constructed by computing full-cliques across all boundary81

vertices within each cell in the partition. Finally, during a query, bidirectional-Dijkstra is run on82

the query graph combining the source and target cells and the overlay, allowing to skip most of83

the vertices in the underlying graph.84

We detail here MUSE, a MUltimodal SEparators-based algorithm, extending CRP to handle85

the multimodal travel computation. By combining label constraints with a profile label correcting86

algorithm during preprocessing, we can efficiently handle modal constraints and time-dependency.87

Our main contributions are the following:88

• We present a multimodal graph partitioning approach, with a label correcting algorithm to89

compute multimodal time-dependent cliques efficiently;90

• We associate the multimodal graph to a labeled automaton to reduce the number of vertices in91

the product graph. It reduces the memory footprint and achieves faster preprocessing times;92

• We experimentally evaluate our algorithm on a country-scale network with different heuristics93

for faster queries.94

• We provide an open-source tool to construct multimodal networks and a unified dataset to serve95

as a benchmark for multimodal route planning algorithms.96

We first review in section 2 the relevant multimodal route planning algorithms. We then detail97

in section 3 the model we used to represent a realistic multimodal network. In section 4, we explain98

each stage of our solution. Mainly, we discuss partitioning in section 4.1, the process of computing99

a multimodal overlay in section 4.2, and the algorithm and heuristics used to answer queries in100

section 4.3. The experimental setup, the results, and associated discussion are available in section101

5. Finally, in section 6, we detail our conclusion and possible future work.102

2. Related Work103

Multimodality involves considering multiple transit networks. The public transit network is typi-104

cally modeled with a time-dependent graph (Brodal and Jacob 2004): an edge exists in the graph105

when a shuttle connects both vertices. Inversely, the road and other unrestricted networks (pedes-106

trian and bicycle) are time-independent: the graph structure remains unchanged for very long107

timescales.108

2.1. Road Networks109

Route planning in road networks involves computing a path that provides the shortest travel time.110

However, road congestion is very frequent, and travel duration may vary in time. Thus, Baum111

et al. (2016) compute a profile search, to compute the minimum travel time for all departure times112

of the day. They compute a multilevel partition of the graph, constructing an overlay. Then, the113

approach stores the clique matrix to compute the paths between the different border vertices in114

the overlay. The preprocessing has to be re-executed only for the affected cells in the partition to115

handle live traffic. MUSE extends this work to deal with multimodal networks.116

2.2. Public Transit networks117

Transit (Antsfeld and Walsh 2012) operates on a graph combining different public transit networks118

and evaluates the shortest path based on the associated risk of transfers (probability to miss119

one transfer and its impact on travel time) on a combination of transit networks. We believe,120

however, that true multimodal networks must combine both unrestricted networks such as road121

and pedestrian networks and schedule-based networks such as trains, trams, and buses. Otherwise,122

a classical time-dependent variant of Dijkstra’s algorithm (Bauer, Delling, and Wagner 2011) would123

suffice to solve the problem.124

Bast, Hertel, and Storandt (2016) exploit the natural hierarchy of local and long-distance trans-125

ports by partitioning the graph. Each stop is assigned to a cluster so that the number of inter-cluster126

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
4 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

edges is minimized. Then, an existing algorithm is executed to precompute the paths inside each127

cluster. Only the local transport connections are considered for clustering since long-distance trans-128

portation should rather interconnect the clusters. Delling et al. (2017) also partition the transit129

network to speed up the computation. They consider a hyper-graph where the vertices corre-130

spond to routes (bus/subway) and edges to stops. Typically, multiple public transport agencies131

are sparsely interconnected and would correspond to different partitions. Some routes are then132

precomputed in the overlay so that the query can only process the source and target clusters and133

these overlay routes. In MUSE, we also propose to partition the graph, but we consider rather134

multimodal networks.135

Cionini et al. (2017) exploit a Dynamic Timetable Model (DTM): the graph is updated when a136

delay is observed in the public transit network. In particular, DTM reduces the number of changes137

to apply to the graph when a timetable has to be modified. The authors only modify the graph138

structure to model the public transit network. Thus, a classical algorithm such as ALT (Goldberg139

and Harrelson 2005) may be directly applied to the modified graph to compute the shortest routes.140

2.3. Multimodal route planning141

Multimodal networks are usually modeled with labeled graph structures. Vertices belonging to the142

same modal network are marked with a similar label, and link edges (aka. connecting edges) are143

added to account for transfers from one mode to another. In that context, the shortest path problem144

comes with additional constraints that restrict the sequence of transportation during query time.145

Furthermore, path feasibility must be ensured: even if the private car is chosen as a valid means,146

the path is not feasible if it requires using the car after a bus ride.147

Minimizing the travel time may not be sufficient in multimodal networks: the number of trans-148

fers/modes or the price may also be considered. Three main approaches exist in the literature (Gian-149

nakopoulou, Paraskevopoulos, and Zaroliagis 2019):150

1. Scalar approaches: multiple metrics are transformed into a single objective, for instance, with a151

weighted sum. A transfer may typically be transformed into a time penalty to optimize the travel152

time uniquely. While such an approach reduces the complexity, combining different metrics is153

often reductive;154

2. Pareto sets: the algorithm keeps all the optimal paths for at least one criteria. This set may be155

quite large, and some heuristics exist to prune the less interesting elements;156

3. Label constrained shortest paths: the graph is explored while respecting a sequence of possible157

modes. These modes are often represented with a Finite State Automata.158

2.3.1. Scalar approaches: A few approaches handle only a single objective. Ulloa, Lehoux-159

Lebacque, and Roulland (2018) propose XTP, an iterative approach to merge the static road160

network and the public transit network. The shortest path is computed at each iteration from the161

previously reached bus stops to the next ones. While this approach works well for small networks162

(e.g., on a metropolitan scale), the complexity becomes intractable for large networks.163

The road network subgraph in a multimodal network is usually far bigger (and denser) than164

the public transit network. Access-Node Routing (ANR) (Delling, Pajor, and Wagner 2009) was165

designed to exploit this property. It borrows ideas from TNR (Bast, Funke, and Matijevic 2006) to166

perform table lookups on the road network and restrict the search on the public transit network.167

ANR pre-computes access-nodes, a set of vertices in the multimodal graph forming a boundary168

between the road and the public transit network. For each vertex in the road network, a profile-169

graph consisting of the shortest paths to all access-nodes is precomputed, requiring significant170

additional memory. An alternative technique, core-based ANR, hierarchically contracts the road171

network first. Subsequently, access-nodes are only evaluated for the core, i.e., the contracted graph,172

with significantly fewer vertices.173

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 5

2.3.2. Pareto sets: User Constrained Contraction Hierarchies (UCCH) (Dibbelt, Pajor, and174

Wagner 2015) is a hierarchical technique originally designed for road networks. The main idea is175

to contract while preprocessing the graph vertices ordered by their measured importance. For each176

contracted vertex, a shortcut edge is inserted between its neighboring vertices and whose weight177

preserves the cost of the shortest path containing the contracted vertex. The algorithm solves178

queries by running a bidirectional Dijkstra, only scanning vertices with higher importance until179

the forward and the backward search meet. To separate modal constraints from preprocessing, the180

authors initially split all vertices into different sets based on their labels. They contract each set of181

vertices separately to make sure that all shortcut edges have a unique label. Thus, UCCH is scalable182

since it handles each mode of transport separately. However, travel times are often unpredictable183

in road networks. Thus, a weight change implies that the whole hierarchy has to be recomputed:184

routes may become suboptimal. We propose instead in MUSE to recompute the paths only for the185

geographical areas where the weight change occurred.186

Sauer, Wagner, and Zündorf (2020) propose to compute journeys in multimodal networks, with187

several bike-sharing operators. The operator-dependent variant introduces a new label identifying188

each operator which can only be changed at the specific bike-sharing stations. Handling labels189

allow the authors to compute Pareto sets, the bike operator being a criterion. The second variant190

expands the graph to execute any public transit algorithm: each operator corresponds to a layer.191

A pruning step helps to reduce the preprocessing time when different operators are far from each192

other.193

ULTRA (Baum et al. 2019) constructs the routes in a public transit network, with transfers194

using an unrestricted mode (e.g., walking or taxi). More precisely, ULTRA computes shortcuts195

in the transfer graph (with the unrestricted mode) to connect pairs of stops in the public transit196

network. ULTRA minimizes the number of shortcuts while still guaranteeing that Pareto-optimal197

journeys can be extracted. Giannakopoulou, Paraskevopoulos, and Zaroliagis (2019) also adopt a198

similar approach, extending the Dynamic Timetable Model: they update timetables when a delay is199

observed. The public transit network is modeled with a time expanded graph, and some additional200

arcs are inserted to connect two stations through an unrestricted mode (i.e., walking or driving).201

The authors group vertices in the graph to accelerate the computation. However, the unrestricted202

mode graph is considered static, while congestion may be frequent in urban environments. More-203

over, inserting additional arcs may be expensive in large graphs (e.g., for a whole country).204

2.3.3. Label constrained: State-Dependent ALT (SDALT) (Kirchler et al. 2011) adapts205

ALT (Goldberg and Harrelson 2005), a popular goal directed algorithm, for multimodal queries.206

The intuition is to speed up Dijkstra with a heuristic based on the triangle inequality observed in207

transportation networks. In essence, it computes during preprocessing a set of landmark vertices.208

Then, for each landmark, it constructs a constrained shortest-path tree to (and from) all other209

vertices in the graph. During query time, the preprocessed shortest path costs are used to assign a210

potential to each vertex representing the tentative distance to reach the target vertex. It relies on211

DRegLC (Barrett, Jacob, and Marathe 2000), a multimodal version of Dijkstra, constrained with212

predefined automata. The complexity of the automaton impacts both preprocessing and query213

times. The main drawback of this approach corresponds to its scalability: computing landmark214

distances becomes too costly for large graph instances.215

3. Model and Assumptions216

Transportation networks are usually modeled with graph structures for their intuitiveness and the217

extensive algorithmic toolbox of graph theory (Thomson and Richardson 1995). Mainly, we model218

a multimodal network using a labeled directed graph with time-dependent edge costs. It consists219

of multiple layers of unimodal networks that are interconnected via link edges.220

We detail in sections 3.1 through 3.4 each unimodal network followed by the process of computing221

link edges in section 3.5 to obtain the multimodal graph. For better readability, we summarize222

recurring notation in table 1. Following are definitions consistently used throughout the paper:223

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
6 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Table 1 keywords and symbol definitions

notation definition

G(V,E) or G Directed graph with V vertices and E edges.
G(V,E,Σ) or GΣ Directed graph, labeled with alphabet set Σ.
Eroad ⊂E routes/streets that cars may take
Efoot ⊂E paths that pedestrians may take
C set of elementary connections between two public stations (with

their time schedule)
V road ⊂ V crossroads that cars may take
V rentcar ⊂ V renting stations for shared vehicles
V park ⊂ V parking spots, where parking a car is authorized
V foot ⊂ V crossroads that pedestrians may take
V bike ⊂ V crossroads authorized for bikes
V rentbike ⊂ V renting stations for shared bikes
V stations ⊂ V stations of the public transit network
V platform ⊂ V platforms, each of them attached to a given station
speedwalk ∈R average speed of pedestrians
speedbicycle ∈R average speed of bicycles
c, f , b, p modes: car, foot, (private or rental) bicycle, and public
cr and cs to denote when a car is rented and restored
br and bs to denote when a bike is rented and restored

(v,w)∈E Directed edge from vertex v to w.
c(v,w) The cost, represents travel time [s] of (v,w).
c(v,w, τ) Time dependent cost of (v,w) at time τ .
len(v,w) Physical length [m] of (v,w).
lab(v,w) Label attached to (v,w).
P = {v0, v1, .., vk} or Pv0vk A path is an ordered set of vertices vi ∈ V (G).
c(P, τ) The cost of path P when departing at time τ .
d(r, t, τ) The cost of the shortest path Prt departing at τ .
word(P) =∪k−1

i=0 lab(vi, vi+1) The sequence of edge labels associated to path P .

A= {S,Σ, δ, s0,F} Deterministic Finite Automaton (DFA) consists of a set of states
S and alphabet Σ, a transition function δ, an initial state s0,
and a set of final states F . See section 4.2.

G(V ×,E×) or G× =GΣ×GA Product graph merging graph GΣ and graph automaton GA.
⟨v, s⟩ ∈ V × Product vertex is a pair of vertex v ∈ V (GΣ) and a state s ∈

S(A).(
⟨v, s⟩, ⟨w,s′⟩

)
∈E× Product edge, requires a valid transition s′ ∈ δ(s, lab(v,w)).

A directed Graph G(V,E) consists of a set of vertices v ∈ V , and directed edges (v,w) ∈ E224

connecting vertices v,w ∈ V . A vertex is an abstraction of a physical entity in the network: an225

intersection of road segments in the road network or a public transit network station. Throughout226

the paper, all graphs are considered directed unless otherwise specified.227

The Edge Cost Function c(v,w, τ) (also written fvw(τ) in the literature) represents the time228

required to travel from vertex v to vertex w, when departing at time τ . This variable is referred229

to as the travel-time. This cost is a periodic positive piece-wise linear function f : Π→R+ where230

Π= [0, p]⊂ R with a period p ∈ N. If f is constant, then the edge belongs to a time-independent231

network such as the foot or bicycle networks; otherwise, the edge is said to be time-dependent.232

In public transportation, the period is typically one week, and the cost function is typically a233

non-continuous time function: the travel time increases suddenly when a bus/train leaves a specific234

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 7

station. In road networks, the cost depends on the congestion and is rather a continuous time235

function. However, this cost is unknown a priori since making mid or long-term traffic forecasting236

is still an open problem (Chen et al. 2019).237

In any case, the FIFO property is maintained to ensure polynomial complexity (Kaufman and238

Smith 1993). Also known as the non-overtaking property, it holds that for all τ1, τ2 ∈Π such that239

τ1 ≤ τ2 then τ1 + f(τ1)≤ τ2 + f(τ2). In other words, waiting at a vertex never pays-off.240

A Path P = {v0, v1, .., vk}, also written Pv0vk , is an ordered sequence of vertices vi ∈ V . Its asso-241

ciated cost is recursively evaluated with the edge cost of its edges by c(v0, v1, τ)+ c
(
{v1, .., vk}, τ +242

c(v0, v1, τ)
)
when departing from v0 at time τ . For a query q(r, t, τ) with r, t ∈ V , our goal is to243

compute the shortest path P with the smallest cost denoted by d(r, t, τ).244

3.1. Road Network (private cars, taxis, and rental vehicles)245

Structurally, road networks consist of intersecting road segments. Each segment is characterized246

by its length and a specific speed-limit, which can be used to derive the cost function. In its graph247

representation, each edge (v,w) ∈ Eroad represents a road segment, and the vertices v,w ∈ V road
248

mark the junction of two or more road segments.249

For a realistic model, though, dynamic traffic conditions must be taken into account as speed250

can unpredictably vary. Thus, we rely on speed measurements to construct the cost function. For251

each segment, we collect a set of speed values over a time window Π sampled at a fine-grained rate252

∆t (we detail our dataset in the experimental evaluation of section 5). Then, for each edge (v,w)253

we construct its speed profile as a piece-wise linear function fvw. During query time, we compute254

the cost c(v,w, τ1) of departing from v at time τ1 by evaluating the area under the speed-curve,255

adjusting the arrival time τ2 such that:
∫ τ2

τ1
fvwdt= len(v,w) where len(v,w) is the length of the256

edge. This is a trivial geometric computation considering the function is piecewise linear. Solving257

the integral for τ2, travel-time is given by c(v,w, τ1) = τ2− τ1.258

Moreover, getting onto or off of a car is only permissible where parking is possible. Hence, for259

each vertex belonging to a road segment where parking is authorized (typically excludes high-260

ways, tunnels, bridges, and sidewalks), we label it as a suitable parking spot v ∈ V park ⊂ V road.261

Furthermore, instead of restricting the road network to private driving only, we consider alter-262

native options, including rental vehicles and on-demand services such as Uber and taxis. While263

on-demand vehicles are typically accessible at every vertex v ∈ V park (we discuss the additional264

incurred waiting cost in section 5), rental vehicles are only available at rental stations. Thus, we265

add a vertex v ∈ V rentcar ⊂ V road for each rental station and insert an edge (v,w) ∈ E to connect266

the station to the closest junction w in the road network.267

3.2. Foot Network268

The foot network is represented by a time-independent graph (V foot,Efoot). Vertices V foot represent269

junctions and edges Efoot are added for each footpath including sidewalks, bridges, and stairs. The270

cost of an edge (v,w) is thereby a constant given by c(v,w) = len(v,w)/speedwalk where speedwalk271

represents the average pedestrian walking speed.272

3.3. Bicycle Network273

Similar to a foot network, the bicycle network is based on a time-independent graph G(V,E) where274

vertices V represent junctions and edges E depict either cycling lanes or road segments where275

biking is allowed (typically non-motorway road segments). The cost c(v,w) = len(v,w)/speedbicycle276

is evaluated based on average cycling speed speedbicycle.277

Besides private bicycles, bicycle-sharing systems are widespread in urban cities and are efficient278

for fast transfers between nearby public transit stations. Rental bicycles must, however, often be279

picked up and returned at specific locations (bicycle stations). Thus, we add a vertex v ∈ Vrentbike⊆V280

for each rental station and an edge (v,w) between the station and its closest junction in the bicycle281

network.282

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
8 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Station A

vA

vA1

vA2

vA3

route 3

Station Broute 1
route 2 v B1

vB

v B2

0

00

0

0

vA

vA3

Route

Meta station vertex

Platform vertex (3rd
platform of station A)

(Generic) Transfer Edge

Connection Edge

Conditional Transfer Edge

Station of the public
transit network

Figure 1 Time-dependent graph representing the public transit network

3.4. Public Transit Network283

The public transit network is based on a timetable T = (Z, V stations,C) which consists of a set of284

shuttle vehicles Z, a set of stations V stations, and a set of elementary connections C. An elementary285

connection is a 5-tuple c = {z, vd, va, td, ta} ∈ C and represents a unique shuttle z ∈ Z departing286

from a station vd ∈ V stations at time td and arriving at another station va ∈ V stations at time ta287

without a stop at any intermediate station.288

We define a trip as a sequence of elementary connections {c0, c1, .., ck} fulfilled by a single vehicle289

such that ∀i = 1,2, .., k, ci = {z ∈ Z, vd(i) ∈ V stations, va(i) ∈ V stations, td(i), ta(i)}, where vd(i) =290

va(i− 1). A trip typically denotes the itinerary of a single-vehicle scheduled at a particular time.291

We group multiple trips into a single route, which is time-independent and denotes a fixed ordered292

sequence of stations. To obtain the set of routes R, we iterate over all trips and extract for each293

of them, a route r= {vd(i)}i∈[0,k] ∪{va(k)} that we add to R iff r /∈R. We denote by Rsub(v)⊂R294

the subset of routes passing through station v ∈ V stations, that is ∀r ∈Rsub(v), v ∈ r.295

We have to model the transfers between different trips and routes to construct a realistic time-296

dependent graph G(V,E) from the timetable T . We proceed as follows:297

• ∀v ∈ V stations, ∀r ∈Rsub(v), we add a platform vertex vp ∈ V platforms, modeling the platform in298

the station for the corresponding route. Let us denote by fstation : (V
stations,Rsub(v))→ V platforms

299

the bijective function connecting each pair of station and route to its platform vertex.300

• if we know exactly the transfer time between two platforms, ∀v ∈ V stations, we add conditional301

transfer edges (vp, vp′) between platform vertices vp, vp′ ∈ V platforms of the same station, i.e.,302

fstation(vp) = fstation(vp′). Their cost is the transfer time (walking time) from one platform to303

another;304

• If the transfer time is not known exactly, we insert generic transfer edges. We compute the average305

walking time to go to a central point in the station, denoting a fixed transfer cost c(vp, fstation(vp))306

toward any other platform of the same station fstation(vp). As c(vp, fstation(vp)) includes the307

full transfer cost, ∀v′p ∈ V platforms|fstation(vp) = fstation(v
′
p), we add an edge (fstation(vp), v

′
p) with308

c(fstation(vp), v
′
p) = 0 to preserve the connectivity: we consider that the transfer time has already309

been considered when the passenger arrives at the station vertex.310

These transfer edges are also used when a passenger exits the transit network.311

• ∀c ∈ C, we add a connection edge representing one ”edge” for each edge of a route followed312

by a collection of vehicles. A connection edge (vp, vp′) is inserted between the platform vertices313

vp ∈ V platforms and vp′ ∈ V platforms where ∃ci ∈ R|vp = vd(i) and vp′ = va(i) (a vehicle leaves314

vd(i) and arrives at va(i)). Its cost c(vp, vp′ , τ) = ta(i)− td(i) is time dependent, and depends315

on the timetable. It is worth noting that we consider non-multi-edge graphs: a connection edge316

is inserted between two consecutive platforms of a route. Since different routes correspond to317

different platforms, we have at most one edge between any pair of platforms (either a (conditional)318

transfer edge or a connection edge depending on whether the platforms correspond to the same319

station or not).320

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 9

t

60 min

f v

travel-time

w
ai

ti
ng

-t
im

e

//

//

30 min

9h458h30

2v4

Figure 2 Piecewise linear function describing the cost of edge (vA2, vB1) from figure 1. Six trains are scheduled:
four regular trains of 60 min travel-time and two fast trains of 30 min travel-time. Upon arriving to the
station at 8:30, the next shuttle is a regular train scheduled to depart at 9:45.

The resulting graph is illustrated in figure 1. A hypothetical journey may begin at station321

vA at τ = 8:30. There, we wait for the next train departing from the second platform (vertex322

vA2) towards station vB via route 2, reaching the first platform vB1. The cost function of edge323

(vA2, vB1) denoted fvA2,vB1
is depicted in figure 2. The total cost for the traversal of (vA2, vB1) at324

t= τ = 8:30 is c(vA2, vB1, τ) = 135min, comprising both the waiting and the travel time. Because325

the slope dfvA2,vB1
(t)/dt=−1, waiting time is given by the elapsed time between arrival and the326

next departure (8:30 → 9:45). Upon arriving to station vB at 10:45, we disembark on the platform327

denoted by vertex vB2 and proceed to transfer to another train traveling along route 3, costing us328

c
(
vB1, vB, τ + c(vA2, vB1, τ)

)
additional time.329

3.5. Assembling the Multi-modal Network330

The multimodal network combines all of the road, foot, bicycle, and public transit networks within331

a single data structure: a labeled directed graph G(V,E,Σ). To distinguish the networks, we attach332

a unique label σ ∈ Σ = {c, f, b, rb, p} to each edge, where c, f , b, rb, and p stand for car, foot,333

(private) bicycle, rental bicycles, and public respectively. Let us denote by Gσ(Vσ,Eσ) the uni-modal334

graph labeled σ ∈ Σ. The vertex-set of the multi-modal graph G is given by V = ∪σ∈ΣVσ and its335

edge-set E = ∪σ∈ΣE
σ ∪Elink where Elink contains the set of link edges allowing modal changes in336

G, such as taking a bus after a short walk, by linking the different uni-modal networks together.337

Intuitively, any transition from one network to another should be mediated via the foot network,338

as some walking is usually required for any modal change. Depending on the network however,339

transitions to and from the foot network are only allowed at specific locations, and thus, we select340

a subset of link vertices V σ
link ⊆ V σ from each graph for the mode σ:341

Foot ↔ Road: The road network is accessible everywhere a car is allowed to park. Furthermore,342

rental vehicles are accessible at rental stations. Thus, all parking spots and rental stations are343

marked as link vertices V road
link = V park ∪V rentcar.344

Foot ← Private Bicycle: Considering that bicycles can be used almost everywhere walking is345

possible (except on stairways, for instance), every vertex v ∈ V bike is a link vertex from which we346

can access the foot network. Thus, V bike
link = V bike.347

Foot ↔ Rental Bicycle: when renting a bicycle, we can ’enter’ and ’exit’ the bicycle mode only348

when entering a rental station. Thus, V rentbike
link = V rentbike, where V rentbike represents the rental349

stations only.350

We assume here that a bicycle can be returned to any rental station. If different companies are351

colocated, we should force the user to return its bike to the right rental station. To support such a352

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
10 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

feature, we would need to use a different label for each company, similarly to (Sauer, Wagner, and353

Zündorf 2020). The automaton would, in that case, introduce a new state denoting the company354

id to force to return the bicycle to the right location.355

Foot ↔ Public Transit: Public transit stations are accessible via station vertices. Hence,356

V stations
link = V stations.357

Then, for each vertex v ∈ V σ∈Σ
link , we must compute the closest vertex w ∈ V foot in the foot network358

and add the link edges (v,w), (w,v)∈Elink. Additional labels are added to Σ as we label link edges359

according to the type of transfer:360

• link edges (v,w), (w,v)|v ∈ V foot∧w ∈ V rentbike are labeled with lab(v,w) = br and lab(w,v) = bs361

which imply renting and restoring the bike respectively.362

• link edges (v,w)|v ∈ V bike and w ∈ V foot are labeled with lab(v,w) = b. Indeed, we can only363

transition from the bike to the foot network (i.e., the bike is only available at the point of364

departure).365

• link edges (v,w), (w,v)|v ∈ V foot and w ∈ V rentcar denote transfers to car-rental stations, and are366

labeled with the labels cr and cs similarly to the bike-rental case.367

Relying on a brute force approach to compute link edges is costly: we have to scan the whole368

foot network to identify the closest foot-vertex for each vertex in the bicycle network, leading to a369

quadratic complexity of O(Vb×Vf). A better approach relies on clustering the foot vertices using370

a 2d-tree (Bhatia et al. 2010) based on latitude and longitude, which is a suitable data structure371

for solving the nearest neighbor problem in logarithmic time.372

It is worth noting that this preprocessing is executed once, even if the traffic congestion evolves373

later: multimodal links are not time-dependent. Thus, the cost of a link edge c(v,w) is fixed and374

depends on the transfer type. It includes the required walking-time to transfer to or from the foot375

network and an additional cost to consider either parking-time, processing at a rental station, or376

for instance, the time it takes to secure a bicycle. Nonetheless, we must also ensure path feasibility.377

That is, if the private car (resp. bicycle) is left behind at some point during the trip in favor378

of using the bus, we would not be able to use our private car (resp. bicycle) again. Similarly, a379

scenario in which the private car is used after taking a train is not valid. However, the road network380

remains accessible via other means such as a taxi or from a rental station. Such constraints are381

not embedded within the graph but instead dealt with using an automaton, as detailed in the382

upcoming section.383

We may extend our multimodal graph to handle passengers carrying their private bikes on384

public transport. In that case, we would accept a direct transition between the bicycle and public385

networks. The link vertices correspond to the subway/bus stations that accept bicycles. The label386

associated with the link edges are different when transitioning from bicycles to the public network,387

and inversely. That way, we can force in the automaton the sequence bicycle→ public→ bicycle388

(cf. section 4.3).389

4. MUSE: The Algorithm390

We now detail MUSE, a speedup technique to Regular Language Constrained Dijkstra (DRegLC)391

based on graph separators to solve the multimodal shortest path problem. By dividing the multi-392

modal graph GΣ into multiple smaller regions, we can precompute an overlay graph H significantly393

smaller than GΣ and use it to compute queries much faster.394

MUSE runs in three stages:395

1. partitioning the graph: we partition the graph GΣ to split it into k cells {C0,C1, ..,Ck} so that396

we minimize the number of boundary vertices (section 4.1). Regardless of the time-dependent397

nature of GΣ, partitioning is run only once, as it only depends on the topology of the graph.398

2. computing the overlay: we compute for each cell a full clique, essentially adding a directed399

edge for each pair of boundary vertices (section 4.2). It is worth noting that the full clique has to400

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 11

Multimodal Cell

Road

Bike
Public

Foot

Cut Edges

wv

u x y

Figure 3 Multimodal graph partition with cut edges shown in bold segments. The multimodal cell spans across
all unimodal networks. The vertices u, v, and w are boundary vertices and the shortest paths Puw and
Pvw share the subpath {x, y, ..w}.

be recomputed when the weights change. The overlay graph consists of all cliques and cut edges,401

i.e., edges connecting two different cells. The cliques are constrained by an automaton that402

defines the sequences of modes allowed by the user. Furthermore, considering that the graph403

contains time-dependent edges, the weight of clique edges can also, possibly, be time-dependent.404

Therefore, we run profile queries to compute the cost function of each clique edge. Even though405

profile queries are costly, cliques are independent, and the computations are parallelized, allowing406

to compute the whole overlay H for large instances in a few minutes only.407

3. solving queries: we compute the shortest path P = q(r, t, τ) by running DRegLC on the query408

graph Gq = Gr ∪ H ∪ Gt which consists of the subgraphs Gr and Gt, induced by the cells409

containing the source and target vertices r and t, respectively and the overlayH. We can improve410

query times with a goal-directed version of the algorithm called MUSE⋆. Better speed-ups are411

possible using heuristics (MUSESV) with a tradeoff on correctness (section 4.3).412

4.1. Stage 1: Partitioning The Graph413

Planar graphs (i.e., graphs that can be drawn on a flat surface without any intersecting edges)414

belong to a class of sparse graphs with valuable topological properties. Most importantly, planar415

graphs can be partitioned in linear time with small separators (Djidjev 1982).416

Given an undirected graph G(V,E), a partition on G is a collection {C1,C2, ..,Ck} where each417

element Ci ⊆ V is referred to as a cell. Partitioning breaks apart the vertex-set V into k cells418

V =∪k
i=1Ci with no overlap Ci∩Cj =∅|i ̸= j. Most importantly, the goal is to compute a partition419

such that the number of boundary vertices is minimized. An edge (v,w) is a cut edge if both v and420

w are boundary vertices belonging to two different cells.421

Although not planar (due to overpasses and tunnels), road networks can also be efficiently422

partitioned (Eppstein and Goodrich 2008, Sanders and Schulz 2012). In a multimodal graph, the423

vast majority of the vertices belong to the road network. In fact, most foot and bicycle vertices424

are duplicates of road vertices (think of sidewalks along a road segment, for instance); therefore,425

partitioning remains viable.426

Computing ideal partitions is, however, NP-hard (Garey and Johnson 2002); thus, we recourse427

to approximations that have exhibited good results for transportation networks. METIS (Karypis428

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
12 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

and Kumar 1998) is a Multilevel Graph Partitioning algorithm that runs in three stages. The429

first, coarsening stage, aims to reduce the graph’s size by repeatedly merging neighboring vertices430

and collapsing edges. Each iteration i, produces a coarser graph Gi than its predecessor Gi−1.431

The second stage, partitioning, is run on the coarsest graph. Finally, during the uncoarsening and432

refining stage, the graph is expanded at each iteration i, and the partition is refined until the graph433

reaches its initial size.434

Setup: our objective is to minimize the overall number of boundary vertices, regardless of the435

number of incoming and outgoing cut edges at each cell. Therefore, we transform the directed436

labeled graph GΣ into an undirected graph G(V,E) without labels. Furthermore, considering that437

the public transit network is modeled as a time-dependent graph, the partitioning process might438

break apart the platform vertices of a single station across multiple cells. This would mean that the439

different platforms of a station would all be border vertices with many transfer edges, which would440

be suboptimal. To speed-up the partitioning, we contract all the platforms (V platforms) attached441

to the same station into a single vertex vs ∈ V station, corresponding to a station. We also keep an442

edge (vs, vs′)∈E if there exists at least one connection edge between any substation of vs and any443

substation of v′s (i.e., the two stations are connected by at least one route).444

Coarsening is an iterative process where pairs of vertices are contracted together to reduce the445

size of the graph. At each iteration i we obtain a coarser graph Gi(Vi,Ei), so that |Vi| < |Vi−1|.446

Initially, ∀v ∈G we attribute a size label s(v) = 1. Contracting two vertices v,w means replacing447

them with a new vertex x such that s(x) = s(v)+s(w). To contract multiple vertices simultaneously,448

a set of edges M ⊂Ei is selected, such that no two edges share the same vertex, also known as a449

matching. Thus, at each iteration, we compute the maximal matching, i.e., a matching such that450

no additional edge can be added, and contract all vertices v,w|(v,w) ∈M . Coarsening is halted451

when the size of the graph is sufficiently small. Most importantly, we must ensure that |Vi| ≥ k452

where k represents the number of desired cells in the partition.453

Partitioning: the coarsest graph Gc(Vc,Ec) can be partitioned using Breadth-First-Search (BFS)454

starting from a random vertex v ∈ Vc and growing a tree T ⊂ Vc until |T | ≃ 1/2|Vc|. To obtain k455

partitions, the initial partitions are then recursively partitioned log2(k) times. Kernighan and Lin456

(Kernighan and Lin 1970) use a heuristic to polish the partitioning by exchanging vertices between457

cells producing a smaller cut-size.458

Uncoarsening and Refining: at each iteration i, a less coarse graphGi is obtained by expanding459

Gi−1. For all vertices x∈ Vi−1, we expand x to obtain vertices v,w ∈ Vi, and assign them to the same460

cell x belonged to. Kernighan Lin’s heuristic is then run again to refine the partition. After the461

last iteration, we expand the station vertices to retrieve the public transit network and transform462

the undirected partitioned graph G back to the multimodal graph GΣ.463

We obtain a partitioned multimodal graph, as illustrated in figure 3, where each layer corresponds464

to a specific type of transportation. The cells of the partition are, therefore, multimodal cells with465

boundary vertices located in different layers.466

4.2. Stage 2: Computing The Overlay467

The partition produces a set of cells, where each cell Ci contains a set of boundary vertices V b
i ⊂Ci.468

The overlay graphH(V H ,EH) of GΣ has the vertex-set V H =∪k
i=1Vi

b which consists of all boundary469

vertices. The goal is to compute for each pair of boundary vertices v,w ∈ V b
i belonging to the same470

cell Ci, a shortcut edge (v,w) denoting the shortest path Pvw.471

Computing all shortcuts within a cell produces a clique. It is worth noting that MUSE is naturally472

parallelizable. Indeed, each cell is independent, and the computation of the shortest paths for each473

clique can be executed on a different processor/core. After computing all cliques, the edge-set of474

the overlay EH =Ecut ∪k
i=1 (v,w) | v,w ∈ V b

i consists of all edge cuts Ecut together with the clique475

edges. This explains why we minimize the number of boundary vertices when partitioning the476

graph. Computing a clique edge (v,w) requires, however, solving the two following problems:477

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 13

• The shortest path Pvw between v and w is multimodal. Therefore, we must solve the Label478

Constrained Shortest Path Problem (Barrett, Jacob, and Marathe 2000) (LCSPP) to restrict479

the modal sequence of Pvw.480

• Edges can be time-dependent; hence, the cost of Pvw varies based on departure time. Therefore,481

we must compute the profile of (v,w) denoting its associated cost for all departure times.482

We solve both problems simultaneously using a label correcting algorithm, which produces a483

Constrained Profile Clique (CPC) for each cell in the partition. We first detail each problem484

separately, then delve into the details of the algorithm.485

Solving the LCSPP: Using formal languages, we can define modal constraints using regular486

expressions to prune prohibited edge transitions while computing clique edges. A regular expression487

defines a rule for combining a set of letters of an alphabet using the or, and, and kleene opera-488

tors. Moreover, any regular expression can be written in the form of a Deterministic finite-state489

automaton (DFA) (Brüggemann-Klein 1993). Formally, an DFA is a 5-tuple A = {S,Σ, δ, s0,F}490

which consists of a finite number of states S, an alphabet Σ, a transition function δ : S×Σ→ 2S,491

an initial state s0, and a set of accepting states F ⊆ S. Therefore, given a directed labeled graph492

GΣ and an DFA A, MUSE solves the LCSPP by computing a path in GΣ such that (i) its cost493

is minimum and (ii) the word obtained by concatenating its edge labels (sequence of modes) is494

accepted by A (i.e., it corresponds to an acceptable sequence of modes).495

Conveniently, A can be implemented as a directed labeled graph GA. Thus, we can solve the496

LCSPP with DRegLC (Barrett, Jacob, and Marathe 2000), a regular language constrained Dijkstra497

algorithm, deployed on the product graph G(V ×,E×) where V × are vertices and E× edges. The498

product graph G× = GΣ ×GA is a composition of the underlying graph GΣ and the automaton499

graph GA. A product vertex ⟨v, s⟩ ∈ V × is a pair of a vertex v ∈ V (GΣ) and a state s ∈ S(A).500

A product edge (⟨v, si⟩, ⟨w,sj⟩) ∈ E× is added iff there exists an edge (v,w) ∈ E(GΣ) such that501

si× lab(v,w)→ sj is a valid transition of δ ∈A.502

Computing a shortest path profile (Dp): In this section we use the term distance label of a503

vertex v, written l(v), to designate the tentative cost to reach v from a source vertex r (not to504

be confused with multimodal labels). In a unimodal time-dependent graph G, we call Dp a label505

correcting version of Dijkstra’s algorithm (Orda and Rom 1990) allowing to compute the profile506

function d∗(r, t) denoting the minimum travel time of the shortest path Prt for all departure times507

τ . The algorithm does not necessarily settle a vertex v after it is extracted from the queue because508

of time-dependency. Rather, it propagates its profile d∗(r, v) to its neighbors and potentially, re-509

inserts v into the queue (label correction) if d∗(r, v) is improved for some departure time τ .510

In that context, performing edge relaxations requires additional operations to manipulate func-511

tions rather than scalars. Therefore, we define the following operations:512

• evaluate: given a piece-wise linear function f and a time τ , evaluation returns f(τ) in O(log|f |).513

• link: given two edges (v,w) and (w,x) with cost functions f and g, respectively, linking returns514

the cost function f ∗ g = f + g ◦ (f + τ) of the path (v,w,x) with complexity O(|f |+ |g|). The515

operator ◦ designates the composition of two functions.516

• merge: given two parallel edges (v,w) and (v,w)′, with cost functions f and g, respectively,517

merging returns the cost function h=min(f, g), with minimal travel time from u to v for any518

time τ . That is, merge(f, g) =min{f(τ), g(τ) | ∀τ ∈Π} with complexity O(|f |+ |g|).519

Performing the merge operation, in particular, is computationally expensive because we have520

to compute all segment intersections of the input functions f and g. We use a line sweep algo-521

rithm (Bentley and Ottmann 1979) over the breakpoints of f and g. Computing intersections is a522

requirement because the merged functions are not necessarily homogeneous; that is, the slope of523

the piecewise linear functions f and g can be different, rendering the merge operation non-trivial.524

Figure 4 illustrates the outcome of the link and merge operations. In this example, we are merging525

(and linking) the cost function f of a road network edge with the cost function g of a public transit526

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
14 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

t

f

g

(a) cost functions fuv of a road network edge, and
fvw of a public transit edge.

t

link(fuv, fvw)

merge(fuv, fvw)

(b) the resulting functions after linking or merg-
ing fuv and fvw.

Figure 4 Illustrating the outcome of the linking and merging non-homogeneous edge cost functions f and g.

edge. As illustrated, the merged function in figure 4b contains breakpoints belonging to either f or527

g (for instance the first and last breakpoints) but also breakpoints corresponding to the segment-528

intersections of f and g. Furthermore, the resulting function has more breakpoints than either f529

or g, and thus, memory requirement becomes a concern after successive merge-operations.530

Nonetheless, merging can be avoided if one of the functions dominates the other; that is, if531

f ≥ g, then g is kept as the result of the merge. Similarly, explicit linking can be avoided if either532

function is constant. If both f and g are constant, linking is a trivial addition. If only one function533

is constant, we distinguish two cases: if f is constant, we simply translate all g segments upwards534

by the constant. If otherwise, g is constant, we additionally translate all f segments left by the535

constant. Only if f and g are non-constant functions, we scan their breakpoints and perform the536

link operation.537

Algorithm 1 details the steps of Dp, which is very analogous to the classic label setting Dijkstra538

algorithm with a few adaptations to handle vertex labels which are piecewise linear functions. At539

each iteration, the vertex v with the smallest key key(v) = d∗(r, v) (i.e., it has the highest priority)540

is extracted from the queue (line 4) and all of its neighboring vertices are scanned (line 7). For541

each outgoing edge (v,w), we compute the distance label l(w) = d∗(r, v) ∗ fvw (link operation)542

and check if it improves d∗(r,w) for some departure time. In that case, we update the distance543

label, with the merge operation: d∗(r,w) =merge(d∗(r,w), l(w)) and compute key(w) = d∗(r,w)544

(line 8-10). If w is scanned for the first time, we insert it into the queue; otherwise, we just update545

its key inside the queue (11-15). This whole process is repeated until a vertex v is extracted from546

the queue such that d∗(r, v)> d∗(r, t) holds (line 5). Therefore, the target’s distance label cannot547

be improved anymore, the algorithm is stopped, and d∗(r, t) is correct. Similarly, for a set of targets548

T , the same condition must hold for each t∈ T for the algorithm to stop.549

Constrained Profile Clique Algorithm (lcDpRegLC): Given a cell Ci, we have to compute the550

shortest path profiles from each boundary vertex v ∈ V b
i toward all other boundary vertices. Since551

GΣ is a labeled graph, we must also ensure that all shortest paths abide by the regular language of552

automaton A. Let us call DpRegLC the regular language constrained version of Dp, which computes553

profiles of constrained shortest paths. Hence, one approach is to run DpRegLC , |V b
i | × |S| times,554

from each product vertex ⟨v, s⟩ where v ∈ V b
i and s ∈ S(A). In other words, the algorithm would555

compute a path from any boundary vertex: the path is possibly different for any state of the DFA.556

However, this approach is wasteful in terms of memory usage since all pairs of vertex v and state557

s of the DFA are always possible.558

Consider A5, the automaton shown in figure 5e. A vertex v whose label lab(v) = c (corresponds559

to the road network) is not compliant with the state s2 that corresponds to the public transit560

network. Besides, this state is only reachable from either itself or s1 (the foot network). Therefore,561

we design the automaton such that each state is attributed a unique label {f, c, b, p} designating a562

specific type of network. Hence, the product vertex ⟨v, s⟩ is valid only if lab(v) = lab(s). This way,563

we obtain a smaller set V ×b
i of boundary vertices in the product graph.564

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 15

Algorithm 1: Dp (Profile Dijkstra)

Input : graph G(V,E), source vertex r, set of target vertices T
Output: profile function d∗(r, t) for all t∈ T

1 d∗(r, v)≡∞ | ∀v ∈ V and scanned(v) = false;
2 d∗(r, r)≡ 0, set key(r) = 0 and insert r into priority queue Q;

3 while Q not empty do
4 extract vertex v with smallest key from Q;
5 if d∗(r, v)>d∗(r, t)∀t∈ T then // stop when v cannot improve any target t∈ T

6 return
7 foreach outgoing edge (v,w) do
8 if d∗(r, v) ∗ fvw <d∗(r,w) then // (u,w) yields an improvement for some departure τ

9 d∗(r,w) =merge(d∗(r,w), d∗(r, v) ∗ fvw); // update profile of w

10 key(w) = d∗(r, v); // set key to global minimum of the profile function

11 if not scanned(w) then
12 insert w into Q;
13 scanned(w) = true;
14 else
15 update key(w) inside Q;
16 end
17 end

Moreover, instead of running DpRegLC a number of |V ×b
i | times (once for each valid product565

boundary vertex), we are better off using a multiple source approach to compute the whole clique566

in a single run. To understand the appeal of using a multiple-source approach over multiple calls to567

the single-source shortest path algorithm, consider the diagram of figure 3. Vertices u, v, and w are568

boundary vertices belonging to the same cell and the edge (x, y) is common to both shortest paths569

Puw and Pvw. With a multiple source approach, each vertex is attributed one distance label for each570

source vertex. Hence, when scanning vertex y, we can update both d∗(u, y) and d∗(v, y) at once.571

This approach is favored when the set of source vertices are close to one another, increasing the572

likelihood of overlapping shortest paths. Thereby, particularly effective to compute our constrained573

cliques considering that boundary vertices are tightly packed in practice, outlining the boundary574

of the cell they belong to, as illustrated in figure 6b.575

We call our multiple-source algorithm lcDpRegLC , which stands for label-correcting Regular Lan-576

guage Constrained profile Dijkstra. As shown in Algorithm 2, lcDpRegLC takes as input the mul-577

timodal graph GΣ, the automaton A and a set of source vertices R. Since we are manipulating578

product vertices, the distance label of vertex ⟨v, s′⟩ with respect to a source vertex ⟨r, s⟩ is written579

dr,s∗ (v, s′).580

The first block (line 1-5) initializes, for each source vertex ⟨r, s⟩, its own distance label to581

dr,s∗ (r, s)≡ 0 and that of all other vertices dr,s∗ (v, s′)≡∞ (with respect to the source ⟨r, s⟩). Then,582

all source vertices are added to the queue. At each iteration, the vertex ⟨v, s′⟩ with the smallest583

key is extracted from the queue (line 7). Then, for each outgoing product edge (⟨v, s′⟩, ⟨w,s′′⟩)584

(line 8-9), we check if the distance label of ⟨w,s′′⟩ can be improved with respect to each source585

vertex ⟨r, s⟩. That is, if dr,s∗ (v, s′) ∗ fvw < dr,s∗ (w,s′′) holds for any departure time τ , then the edge586

is relaxed (line 13). In that case, we update the key key(w,s′′) to the smallest dr,s∗ (w,s′′) among587

all source vertices ⟨r, s⟩ and add ⟨w,s′′⟩ to the queue (line 16-19).588

To compute the clique of a cell Ci, we define the set of source vertices as the boundary vertices589

R = V b
i . We also define a set of targets T = V b

i and stop the algorithm when the next extracted590

vertex ⟨v, s′⟩ respects rule key(v, s′)> dr,s∗ (t, s′′) for all targets ⟨t, s′′⟩ ∈ T ×S. This means that we591

cannot find a shorter path for the most distant boundary vertex.592

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
16 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Algorithm 2: lcDpRegLC (label correcting DpRegLC)

Input : Graph G(V,E,Σ), Automaton A(S,Σ, δ, s0,F), and Source set R⊆ V
Output: Constrained shortest path profiles dr,s∗ (v, s′) | ∀⟨r, s⟩ ∈R×S and ∀⟨v, s′⟩ ∈ V ×S

1 foreach source ⟨r, s⟩ ∈R×S do
2 dr,s∗ (r, s)≡ 0; // set distance label of ⟨r, s⟩ to 0

3 dr,s∗ (v, s′)≡∞ | ∀⟨v, s′⟩ ̸= ⟨r, s⟩; // set distance label of all other vertices to infinity

4 set key(r, s) = 0 and add ⟨r, s⟩ to priority queue Q;
5 end

6 while Q not empty do
7 extract product vertex ⟨v, s′⟩ with smallest key from Q;
8 foreach outgoing edge (v,w) do
9 foreach transition s′× lab(v,w)→ s′′ do

10 updated= false;
11 foreach source ⟨r, s⟩ do // compute distance labels of ⟨w,s′′⟩ for each source ⟨r, s⟩
12 if dr,s∗ (v, s′) ∗ fvw <dr,s∗ (w,s′′) then // relax product edge (⟨v, s′⟩, ⟨w,s′′⟩)
13 dr,s∗ (w,s′′) =merge(dr,s∗ (w,s′′), dr,s∗ (v, s′) ∗ fvw);
14 updated= true;
15 end
16 if updated then

// set key to the global minimum among all distance labels of ⟨w,s′′⟩
17 key(w,s′′) =min{dr,s∗ (w,s′′) | ∀⟨r, s⟩ ∈R×S};
18 add ⟨w,s′⟩ to Q if not in Q, otherwise update its key;
19 end
20 end
21 end

4.3. Stage 3: Solving Queries593

During the online phase, MUSE solves a query q(r, t, τ) by running DRegLC on the query graph594

Gq = Gr ∪H ∪Gt which consists of the overlay H (precomputed in the previous stage) and the595

subgraphs Gr and Gt, induced by the cells containing the source and target vertices r and t,596

respectively. As Gq is significantly smaller than the original multimodal graph, MUSE computes the597

shortest path Prt(τ) fast enough for interactive queries. Algorithm 3 details the flow of execution.598

Nonetheless, knowing the target’s location allows for making informed decisions while searching599

for the shortest path. Instead of ”blindly” expanding from the source, the intuition behind goal600

direction is to use heuristics to guide the search by prioritizing vertices closer to the target. We601

call MUSE⋆ (pronounced ‘MUSE-star’) the goal directed version of the algorithm (analogous to602

A⋆ (Hart, Nilsson, and Raphael 1968)) which uses Euclidean distances to compute the potential603

function. The potential function π(v) of a vertex v represents an estimate of the remaining cost604

to reach the target vertex t. To guarantee correctness however, the potential function must be605

admissible, which means that it must underestimates the true cost, that is, π(v)≤ cost(Pvt) where606

Pvt denotes the shortest path between v and t.607

Another variant called MUSESV applies the same strategy but relies on the Sedgewick-Vitter608

heuristic (Sedgewick and Vitter 1986), which trades off correctness for the sake of speed. The609

potential function is evaluated as π(v) = α × dEuc(v, t) / Speedmax where dEuc(v, t) denotes the610

Euclidean distance between v and the target t, Speedmax the highest speed in the network and611

α a tuning parameter. Setting α> 1 may potentially overestimate the shortest path’s cost, which612

impacts correctness but results in a smaller search space overall.613

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 17

Algorithm 3: MUSE (query algorithm)

Input : graph G(V,E,Σ), partition {C1,C2, ..,Ck}, overlay H, DFA A= {S,Σ, δ, s0,F},
source r ∈ V , target t∈ V , departure time τ

Output: cost of shortest path Prt(τ)

1 Let Gq(V q,Eq) =Cr ∪H ∪Ct; // Gq is the query graph and Cr and Ct are the source and
target subgraphs induced by their respective cells

2 d(v, s) =∞ | ∀⟨v, s⟩ ∈ V q ×S; // set distance label of all vertices to infinity

3 d(r, s0) = 0; // set distance label of source vertex to 0

4 add source ⟨r, s0⟩ to priority queue Q

5 while Q not empty do
6 extract product vertex ⟨v, s⟩ with smallest key d(v, s) from Q;
7 if v= t and s∈ F (A) then
8 return d(v, s); // v is the target and s is a final state

9 foreach outgoing edge (v,w)∈Eq do
10 foreach transition s× lab(v,w)→ s′ do
11 if d(v, s)+ fvw(τ + d(v, s))<d(w,s′) then
12 d(w,s′) = d(v, s)+ fvw(τ + d(v, s)); // relax the product edge (⟨v, s⟩, ⟨w,s′⟩)
13 key(w,s′) = d(w,s′)+π(w);
14 add ⟨w,s′⟩ to Q if not in Q, otherwise update its key;
15 end
16 end
17 end

It is worth noting that different modes may be used inside the same cell. Indeed, Algorithm 3 does614

not restrict the number of time a specific re-enters a specific cell. Only the Finite State Automaton615

constrains the exploration and will possibly prevent re-using the same mode several times.616

4.4. Handling time-dependent weights and unpredictable evolutions617

In multimodal transportation, we cannot assume weights are static: the user decides according to618

the current network conditions. However, dynamic weights do not have the same meaning and are619

not handled similarly for all transportation modes.620

For Public Transit Networks, the weight of each edge is a non-continuous function: the travel621

time increases discretely after a station has been deserved, including the waiting time before the622

next vehicle’s arrival. Thus, merging two paths corresponds to merging the corresponding end-623

to-end cost functions (section 4.2). These linking and merging operations are expensive, but the624

weights are predictive and known a priori.625

For Foot and Bike Networks, we can safely neglect the variations. Thus, these modes don’t626

impact significantly the computation time.627

On the contrary, Road Networks also have time-dependent weights. However, these travel628

times for each road segment are highly complex to estimate accurately (Yang, Vereshchaka, and629

Dong 2018). Thus, we cannot update the routes with the linking - merging functions. We must630

rather recompute the routes for the road network, taking into account the new weights.631

Typically, UCCH (Dibbelt, Pajor, and Wagner 2015) considers each mode independently. Thus,632

only the road network mode has to be reprocessed. However, the routes have to be recomputed as633

soon as one of the routes becomes sub-optimal. MUSE has been rather designed to cope efficiently634

with this kind of situation: each cell is independent, and the routes have to be recomputed only635

for the cells which undergo a change.636

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
18 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Table 2 Graph characteristics. For the road and bicycle networks, the stations column designates the number
of rental stations.

Transportation Network Vertices edges stations

Gidf Gfr Gidf Gfr Gidf Gfr

Foot (Gf) 519,558 8,048,695 1,363,995 20,157,922 - -
Road (Gr) 457,406 7,252,489 1,018,814 16,712,036 249 899
Bicycle (Gb) 406,711 7,354,519 1,000,591 18,292,964 800 3,324
Public Transit (Gp) 60,959 255,872 351,551 1,089,911 18,836 251,685

Foot-Road edges (Elink
r) - - 44,270 431,470 - -

Foot-Bicycle edges (Elink
b) - - 813,422 14,665,980 - -

Foot-Public edges (Elink
p) - - 37,672 192,886 - -

Multimodal (GΣ) 1,444,634 22,911,575 4,630,315 71,543,169 - -

5. Experimental Evaluation637

We report in this section the performance evaluation of MUSE and its associated heuristic-based638

variants, namely MUSE⋆ and MUSESV . Furthermore, we evaluate State-Dependent ALT (SDALT)639

(Kirchler et al. 2011) on the same dataset to compare both algorithms. SDALT is a landmark-based640

approach applied to multimodal networks. Its preprocessing consists of computing all shortest641

paths in the network from and to a set of landmarks vertices, as described in section 2.3.3.642

Our experimental setup is fully available:643

1. a tool to transform OSM data into a directed graph with adjacency lists (Falek 2019);644

2. our dataset (GTFS, map, NFA, graph overlay) is available online (Falek 2021a). In particular,645

it can be reused to execute other algorithms in the same conditions;646

3. our implementation of our algorithms (Falek 2021b).647

5.1. Evaluation Setup648

We run all algorithms on two graph instances to assess scalability: the Ile-de-France region denoted649

Gidf and a country-size graph Gfr representing France. Table 2 summarizes the graph characteris-650

tics based on each transportation layer. The graphs were modeled by combining:651

1. a topological dataset from OpenstreetMap (Mooney, Minghini et al. 2017), an open-access652

dataset built through the effort of crowd-sensing and accessible via the GeoFabric (Geofabrik653

2019) online platform. We use it to construct the road, cycling, and pedestrian graphs. It consists654

of latitude and longitude coordinates denoting roads, parking spots, and even bicycle and car655

rental service stations.656

2. a General Transit Feed Specification (GTFS) dataset that represents the standard format used657

to encode public transit schedule information. For the Ile-de-France graph instance, we rely on658

the Ile-de-France mobilités (IdFm) dataset (Ile de France Mobilités 2020), an online platform659

providing up-to-date data in GTFS format combining train, RER, subway, tramways, and bus660

networks in the region. For France’s public transit network, we combine four GTFS datasets661

covering the whole country and obtained via the open-source platform Navitia (Navitia Open662

Data 2020).663

To model common use case multimodal trips, we define several automata (Fig. 5):664

A1 depicts the combination of walking and all types of public transportation.665

A2 depicts trips that rely on the private car only, for the whole trip;666

A3 extends A1 with faster transfers, using rental bicycles, mostly available in the city center at667

specific locations. An additional state s2 is reachable via link edges labeled br and bs to either rent668

or return the rental bicycle before pursuing the trip;669

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 19

s

0

s1

f p

ll

f

p
0

(a) A1: walking and
public transportation.

s

0

s

1

s

2

f fr

l l

r f1 20

c

c

(b) A2: walking and private
car.

s1

p

ll

s2

b

s

0f

lb l

b

b brs

f

p

f

b

0

(c) A3: walking and
public transportation
with the possibility of
using rental bicycles.

c crs

c

f

b

 s

0

s

1

s

2

f fr

l l

s3

p

ll

s4

b

lb l

b

0 1

s

0

s

1

s

2

f fr

l l

s3

p

ll

s4

b

lb l

b

2

s

0

s

1

s

2

f fr

l l

s3

p

ll

s4

b

lb l

b

f

(d) A4: walking and pri-
vate bicycle followed by
a rental car for the last
part of the trip.

b brs

b

f
p

f

c

 s

0

s

1

s

2

f fr

l l

s3

p

ll

s4

b

lb l

b

0 1s

0

s

1

s

2

f fr

l l

s3

p

ll

s4

b

lb l

b

2

s

0

s

1

s

2

f fr

l l

s3

p

ll

s4

b

lb l

b

3

s

0

s

1

s

2

f fr

l l

s3

p

ll

s4

b

lb l

b

f p

(e) A5: the private car is used
for the first part of the trip,
followed by any combination of
walking, public transportation
and rental bicycles.

Figure 5 Set of Automata depicting four scenarios used to constrain preprocessing and queries.

A4 excludes the public transit network. It allows using the private bicycle initially followed by a670

rental car for the remaining part of the trip;671

A5 combines all means of transportation. The private car is used only initially, followed by any672

combination of walking, public transportation, and rental bicycles.673

We ran all our experiments on the High-Performance Computing (HPC) of the University of674

Strasbourg. We generated a unique job for each partition and automaton that was executed on an675

Intel Haswell node totaling 24 cores and 32 GB of RAM.676

5.2. Preprocessing677

5.2.1. MUSE: Graph partitioning results are reported in table 3. We tested various partitions678

ranging from 100 - 500 cells for Gidf and 800 - 6,000 cells for Gfr. The partition size, i.e., the679

number of cells, impacts both preprocessing and query times. Increasing the number of cells yields680

smaller cells with fewer border vertices but produces a larger overlay graph, which slows the queries.681

In contrast, a smaller partitioning results in large cells, which increases the preprocessing times.682

Consequently, selecting the adequate partition is a tradeoff between preprocessing and query times.683

Once the graph is partitioned, the cells are independent of each other, and therefore preprocessing684

benefits from parallelism. For instance, figure 6a depicts a partitioning of the Gfr graph into 100685

cells. As illustrated, the number of nodes of each cell varies according to the density of the graph.686

Given a cell with N border product vertices, we evaluate two strategies to compute its clique:687

One-to-Many Strategy: runs a profile regular language constrained Dijkstra DpRegLC algorithm688

from each border product vertex. The algorithm is run N times to compute the clique.689

Many-to-Many Strategy: runs lcDpRegLC only once. It simultaneously computes all the shortest690

path profiles of the clique in a single call.691

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
20 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Table 3 Computational time for partitioning the graph with different number of cells and the associated
number of border vertices.

Graph Number of cells # Border vertices Time [s]

min med max tot

100 124 239 428 24,518 1.023
200 65 180 344 36,975 1.278

Gidf 300 52 159 407 49,102 1.474
400 56 134 263 55,303 1.673
500 29 122 308 63,081 1.874

800 13 91 317 94,897 16.471
1,000 13 91 317 94,897 18.351

Gfr 2,000 3 67 331 141,104 19.742
4,000 4 47 191 194,352 24.598
6,000 2 38 183 239,639 33.366

(a) France multimodal network partition (b) boundary vertices of a single cell
Figure 6 A multimodal partition of France separating the underlying graph into 100 cells. (a) Boundary vertices

belonging to the foot, bicycle, road and public transit networks are displayed in blue, green, red, and
yellow dots, respectively. (b) boundary vertices of the area highlighted in red in figure (a)

Given that the graph’s density is not uniform, preprocessing time varies significantly (few mil-692

liseconds to seconds) from one cell to another within the same partition. Using the one-to-many693

strategy, we make the computation in parallel for each border vertex, i.e., we do not need to allo-694

cate all the border vertices of a cell to the same CPU. However, the one-to-many strategy does not695

leverage the fact that the shortest paths of a clique are likely to share common subpaths. Therefore,696

vertices that are shared by several shortest paths are processed several times.697

In contrast, the many-to-many strategy is more efficient as it simultaneously processes all the698

clique’s shortest paths. However, it prohibits load balancing because it allocates a whole cell to a699

single CPU. In terms of memory, the largest overlays we obtained are 289 MB and 3062 MB for700

Gidf and Gfr respectively.701

Figure 7 depicts the clique computation time distribution in the Ile-de-France region using the702

one-to-many (left) and many-to-many (right) strategies for each partition and automaton. As703

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 21

Number of cells

(a) one-to-many algorithm (DpRegLC)

Number of cells

(b) many-to-many algorithm (lcDpRegLC)
Figure 7 Computational time for the profile cliques of Gidf as a function of number of cells and automaton.

Number of cells

Figure 8 The preprocessing Gain Factor denoting the speedup of the many-to-many (lcDpRegLC) over the one-to-
many (DpRegLC) strategy for each automaton and number of cells. The horizontal red line corresponds
to a gain of 1 and imply no speedup.

expected, preprocessing time decreases when the number of cells increases. Furthermore, larger704

automata require more processing time (for instance, A5 compared to A1) because it increases the705

size of the product graph in addition to computing one shortest path for each available state. An706

interesting result is that lcDpRegLC is an order of magnitude faster compared to running DpRegLC707

multiple times. This confirms our previous hypothesis and shows that within a cell, there is indeed708

a significant number of shortest paths of the clique that do share common subpaths.709

For a clearer comparison, we compute the Preprocessing Gain Factor (PGF) for each clique,710

denoting the ratio of computation time using the one-to-many strategy to that of using the many-711

to-many strategy. The results are shown in figure 8 and suggest that the gain depends mainly on712

the type of automaton used to constrain the preprocessing. The gain is smaller on automata that713

rely, partially, on using the road network (A5) and smallest for automata that exclude the public714

transit network (A2 and A4). In our setup, the road and public transit networks are the dominating715

means of transportation; that is, if all means are allowed, the shortest path between two locations is716

comprised, mostly, of the road network and public transit edges (fastest alternatives). Furthermore,717

since the road network is much denser and larger than the public transit network, the shortest718

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
22 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Figure 9 MUSE clique computation time for Ile-de-France based on the number of vertices contained in each
cell of the partition.

Figure 10 Distribution of 32 landmarks on the France graph based on the Avoid algorithm (Goldberg and
Harrelson 2005).

paths that make up a clique overlap less when constrained by the road network compared to the719

public transit network. Hence, the gain factor is significant for automata A1 and A3.720

For a better insight, figure 9 shows the preprocessing time (using the many-to-many strategy)721

of each cell in the partition as a function of the cell size, i.e., the number of vertices inside the cell.722

Even for the worst-case scenario, the computation time is less than 30 sec and corresponds to a723

large cell of the 100-cell partition with 14000 vertices. The overall processing time is usually less724

than 5 min, even without considering the benefit of parallel computing.725

For the France region, we experimentally selected the partitions such that the cell sizes are726

equivalent to those of the Ile-de-France region, and therefore, preprocessing times are similar when727

one CPU is dedicated to each cell in both cases.728

5.2.2. SDALT: The multimodal goal-directed algorithm known as SDALT improves upon the729

A⋆ algorithm heuristics to achieve fast queries. SDALT relies on the triangle inequality principle730

(Goldberg and Harrelson 2005) to produce better bounds than Euclidean distances. To do so, it731

meticulously precomputes a small set of vertices L called landmarks spread across the network.732

Then, for each landmark l ∈L, it precomputes a forward and reverse constrained shortest path tree733

rooted at l. We implement SDALT as described in (Kirchler et al. 2011). Preprocessing consists of734

computing the landmark-set and their associated shortest-path trees.735

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 23

Table 4 Preprocessing space and time of SDALT (computing landmark distances) based on 32 landmarks for
each automaton in the Ile-de-France region.

A1 A2 A3 A4 A5

space [MB] 634 450 611 438 423
runtime [s] 64.92 83.54 79.92 108.04 106.07

Landmarks selection: we select 32 landmarks using the avoid algorithm (Goldberg and Har-736

relson 2005). The first landmark l0 ∈ L is chosen uniformly at random from the vertex-set Vf of737

the foot network. We compute all shortest paths from l0 to every other vertex v ∈ Vf . Note that738

the reverse shortest paths have the same cost as the foot network is bidirectional. Then, we pick739

a random vertex r ∈ Vf and compute the shortest path tree rooted at r, denoted Tr. For every740

other vertex v ∈ Vf , we compute its weight given by weight(v) = d(r, v)−max{d(l, v) | ∀l ∈L}. The741

weight of a vertex v consequently represents the error in the distance estimation for r when using742

the set of landmarks L, including v.743

To select a new landmark, we compute the size of every vertex v ∈ Vf . First we define the subtree744

Tv ⊂ Tr rooted at v. In particular, we set size(v) = 0 if Tv contains a landmark l ∈ L: v is useless745

since another landmark exists that is already well located. Otherwise, size(v) is evaluated as the746

sum of all the weights of the vertices in Tv. Finally, we select the vertex w greedily with the largest747

size, and we walk in its subtree Tw, traversing recursively, the child with the largest subtree until a748

leaf l is reached. That leaf l is then added to the set of landmarks L. This strategy produces good749

coverage landmarks that yield good lower bounds. This preprocessing phase is run only once.750

Landmark Distances: From each landmark l ∈L, we run DRegLC on the regular and the reverse751

multimodal graphs (we reverse the graph by inverting the direction of all its edges). Therefore,752

we obtain |L| forward and backward constrained shortest-path trees rooted at each landmark l,753

referred to as the landmark distances. In the original SDALT implementation (Kirchler et al. 2011),754

the authors defined four strategies to precompute landmark distances: standard, basic, advanced,755

and specific. Based on the author’s conclusions, the advanced strategy provides only mild speedups756

compared to the basic strategy and requires more memory as the number of calculated bounds is757

a factor |L| higher in the worst case. Hence, we favor the basic implementation, which uses DRegLC758

in conjunction with a single-state automaton with a loop transition labeled with all the allowed759

transportation modes.760

The computational time for selecting 32 landmarks using the Avoid algorithm was 29 seconds for761

Gidf and 8.75 minutes for Gfr. The additional preprocessing time and space required to compute762

landmark distances is summarized in table 4 for Gidf . However, SDALT is not scalable: computing763

all shortest paths between the 32 landmarks and all the vertices of the France graph proved to be764

impractical, even with the resources available on the HPC.765

5.3. Queries766

After precomputing an overlay graph will all the partitions and automata, we generate 10,000767

random queries q(r, t, τ) where r, t are the source and target vertices respectively, and τ is the768

departure time. We compare MUSE with both DRegLC (multimodal Regular Language Constrained769

Dijkstra (Barrett, Jacob, and Marathe 2000)) and SDALT (State-Dependent ALT (Kirchler et al.770

2011)) (Table 5). Figure 11a depicts the query times of MUSE compared to DRegLC on the Ile-de-771

France region, for all queries, regardless of the constraining automaton. MUSE achieves a speedup772

of almost two orders of magnitude over DRegLC .773

By organizing the queries according to their range (Euclidean distance between the source and774

the target), we observe that the speedup increases with the distance range (figure 11b). Indeed,775

the query time not only depends on the number of cells but also the location of the source and776

target vertices. Recalling that the query graph Gq =Gr ∪H ∪Gt combines the subgraphs Gr and777

Gt, induced by the cells containing the source and target vertices r and t, respectively and the778

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
24 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Number of cells

(a) Query times distribution of DRegLC and MUSE for all automata.

0-5 5-20 20-50 50-100 100-150
Distance Range [km]

10 1

100

101

102

Qu
er

y
Ga

in
 F

ac
to

r

Partition Size
100
200

300
400

500

(b) The Query Gain Factor represents the achieved speedup of MUSE over DRegLC for different
partitions and query distance ranges (Euclidean distance).
Figure 11 Performance comparison of DRegLC and MUSE on the Ile-de-France region graph.

overlay H, MUSE always explores Gr and Gt. Therefore, if the cells are large or if the source and779

target are either located inside the same cell or within adjacent cells, MUSE does not benefit from780

the overlay to skip over the rest of the graph. Hence, MUSE performs best for long-range queries,781

as shown in figure 11b.782

In contrast, figure 12 shows the query times distribution of all of DRegLC , SDALT, and MUSE for783

each automaton in the Ile-de-France region. We notice that the speedup of our own implementation784

of SDALT over DRegLC is very close to the original results published by Kirchler et al. MUSE785

is overall an order of magnitude faster than SDALT and achieves better stability across all the786

automata. By comparing the query times distribution of SDALT constrained by A1 and A5, we787

observe that the automaton’s complexity has a significant impact on the performance of SDALT.788

In contrast, MUSE is more robust to the modal constraints.789

MUSE can be augmented using any literature technique that does not require preprocessing790

to achieve further speedups during the query phase. Bi-directional search has been proved to be791

inefficient (and often results in speed-downs) on time-dependent graphs (Nannicini et al. 2008).792

Instead, we relied on goal direction to implement MUSE⋆ and MUSESV (Table 5), as already793

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 25

1 2 3 4 5
Automaton

100

101

102

103

104

Qu
er

y
Ti

m
e [

m
s]

DRegLC SDALT MUSE

Figure 12 Query times distribution of DRegLC , SDALT, and the 300-based partition size MUSE for each automa-
ton on the Ile-de-France region graph.

Table 5 List of algorithms used in the query phase of the experimental evaluation.

DRegLC Regular Language Constrained Dijkstra (Barrett, Jacob, and Marathe 2000).
SDALT State-Dependent ALT (Kirchler et al. 2011).

MUSE similar to DRegLC but runs on the query graph Gq = Gr ∪H ∪Gt, formed by the
overlay H and the source and target induced subgraphs Gr and Gt, respectively.

MUSE⋆ augments MUSE to obey Goal-Direction principles, similar to A⋆ (Hart, Nilsson,
and Raphael 1968).

MUSESV similar to MUSE⋆ but implements the Sedgewick-Vitter heuristic (Sedgewick and
Vitter 1986) to tradeoff correctness for the sake of speed.

discussed in section 4.3. For the MUSESV variant, we tested three values for the heuristic tuning794

parameter α1 = 1.2, α2 = 1.5, and α3 = 1.8. We provide the results in figure 13, depicting the query795

time distribution of all MUSE variants for each automaton and number of cells.796

We notice that query times on A2 and A4 are faster and keep decreasing when the number of797

cells increases. In contrast, an optimal number of cells (200 cells) exists for the automata A1, A3,798

and A5. Ultimately, query times are bound to increase again beyond a certain threshold of the799

number of cells. The largest possible partition is, in fact, |V | (the size of the graph) with each800

cell containing a single vertex. Hence, the query graph is the whole graph, and MUSE degrades801

to DRegLC . Considering that A2 and A4 exclude the public transit network, the link and merge802

operations, which are the bottleneck of the algorithm, are trivial, which explains why the queries803

are significantly faster.804

Goal direction does not seem to be a good strategy to accelerate queries in the Ile-de-France805

region. In fact, Delling et al. (2011a) seem to obtain similar results for small partitions on unimodal806

road networks using Precomputed Cluster Distances (PCD) (Maue, Sanders, and Matijevic 2010),807

another goal directed algorithm.808

In the France region, we fix the number of cells to 1,000 and provide the query times in figure809

14. As query the distance range increases significantly (up to 1,000 km), the computational gain of810

MUSE over DRegLC reaches up to 3 orders of magnitude, especially on automata that include the811

public transit network (A1, A3, and A5). Furthermore, on the same automata, MUSE⋆ provides a812

significant speedup.813

Using the Sedgewick-Vitter heuristic allows us to reduce query times by half in Ile-de-France and814

up to an order of magnitude in France depending on the automaton and number of cells (Fig. 14).815

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
26 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

Number of cells

(a) Automaton A1

Number of cells

(b) Automaton A2

Number of cells

(c) Automaton A3

Number of cells

(d) Automaton A4

Number of cells

(e) Automaton A5

Figure 13 Query times distribution for the Ile-de-France region for each automaton of figure 5. Each plot depicts
the running times of MUSE, MUSE⋆, and MUSESV (with a heuristic factor of 1.2, 1.5, and 1.8) for
each number of cell of the preprocessing.

This is, however, at the cost of sacrificing the travel time correctness. We report in figure 15 the816

Travel Time Error (in minutes) for each MUSESV variant across all automata. MUSESV1.2 , the817

less aggressive overestimating variant, provides paths that are 99% of the time only a few seconds818

longer than the shortest paths. In the worst case, we measure a travel time error of 5 minutes.819

Interestingly, even MUSESV1.5 and MUSESV1.8 behave well if the automata do not allow using the820

public transit network (A2 and A4). Since the travel time function of public transit graph edges is821

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 27

1 2 3 4 5
Automaton

100

101

102

103

104

105

Qu
er

y
Ti

m
e [

m
s]

DRegLC

MUSE
MUSE
MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

Figure 14 On the France region, we fix the number of cells to 1,000 cells and report the query times distribution
of DRegLC versus MUSE and all of its variants, for each automaton.

1 2 3 4 5
Automaton

10 1

100

101

102

Tr
av

el
Ti

m
e E

rro
r [

m
in

]

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(a) Ile-de-France region

1 2 3 4 5
Automaton

10 2

10 1

100

101

102

Tr
av

el
Ti

m
e E

rro
r [

m
in

]

MUSE SV1.2

MUSE SV1.5

MUSE SV1.8

(b) France region
Figure 15 Travel Time Error distribution on the Ile-de-France and France regions for each automaton based on

the heuristic factor setting of MUSESV .

non-continuous (figure 2), missing a connection results in a sudden increase of travel time, which822

explains the large errors observed on the remaining automata. Thus, this variant should be carefully823

exploited.824

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
28 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

6. Conclusion and Future Work825

We presented MUSE, a new approach to solve the multimodal shortest path problem via graph826

partitioning and finite state automaton. Its main advantage is scalability, as it splits large graph827

instances into several independent cells that can be processed in parallel. We also provide different828

strategies to improve the performance of both the preprocessing and the query phases. We achieve829

preprocessing and query times that are fast enough to process a cell and resolve a query in only830

a few milliseconds. Hence, MUSE is a viable solution for real-time multimodal route planning. We831

experimentally tested our implementation and achieved a speedup of up to two orders of magni-832

tude compared to DRegLC , the label constrained version of Dijkstra’s algorithm for multimodal833

networks. Using goal direction and heuristics, we further accelerate the queries and show that the834

obtained paths are, most of the time, only a few seconds longer than the shortest paths. We also835

validated the performance of MUSE against SDALT, a landmark-based goal-directed multimodal836

algorithm. MUSE is an order of magnitude faster than SDALT and proved more robust to varying837

modal constraints. Furthermore, SDALT could not be scaled to handle large graph instances such838

as France’s multimodal transportation network. A problem that MUSE circumvents using graph839

partitioning.840

The partitioning is critical for the performance of both the preprocessing and the query. We first841

tested our implementation of the PUNCH algorithm (Delling et al. 2011b) but switched later on842

to METIS, the general graph partitioning algorithm, which was more reliable and provided better843

results. Therefore, a formal analysis of graph partitioning algorithms tailored to transportation844

networks is essential to improve our current results. Furthermore, to improve query times, multilevel845

partitioning for multimodal graphs is an interesting next step. It allows skipping over most of the846

network using the overlay edges on the partition’s low level while reducing the search space in847

the source and target cells by exploring the high levels of the partition. During preprocessing, we848

also need to compute multimodal profile cliques. We observed that the merge and link operations849

are the bottleneck of lcDpRegLC due to a rapidly increasing number of breakpoints in the travel850

time functions. An interesting work perspective would be to rely on heuristics (Strasser 2017) to851

simplify these operations and evaluate the tradeoff between computational speed and impact on852

correctness. Finally, we considered here only a route computation that minimizes the travel time.853

Handling multiple criteria will require computing the cliques in each cell by maintaining Pareto854

sets. Then, the different Pareto sets will be explored during the query stage. While we conjecture855

that keeping a small number of solutions would be sufficient, we have to investigate how MUSE856

can support multiple criteria with an acceptable computation time and memory.857

References858

Antsfeld L, Walsh T, 2012 Finding multi-criteria optimal paths in multi-modal public transportation networks859

using the transit algorithm. ITS World Congress.860

Barrett C, Jacob R, Marathe M, 2000 Formal-language-constrained path problems. SIAM Journal on Com-861

puting 30(3):809–837, URL http://dx.doi.org/10.1137/S0097539798337716.862

Bast H, 2009 Car or public transport—two worlds. Efficient Algorithms, 355–367 (Springer), URL http:863

//dx.doi.org/10.1007/978-3-642-03456-5_24.864

Bast H, Delling D, Goldberg A, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF, 2016865

Route planning in transportation networks. Algorithm engineering, 19–80 (Springer), URL http://dx.866

doi.org/10.1007/978-3-319-49487-6_2.867

Bast H, Funke S, Matijevic D, 2006 Ultrafast shortest-path queries via transit nodes. Ninth DIMACS Imple-868

mentation Challenge, 175–192, URL http://dx.doi.org/10.1090/dimacs/074/07.869

Bast H, Hertel M, Storandt S, 2016 Scalable transfer patterns. Proceedings of the Meeting on Algorithm Engi-870

neering and Experiments (ALENEX), 15–29, URL http://dx.doi.org/10.1137/1.9781611974317.871

2.872

Bauer R, Delling D, Wagner D, 2011 Experimental study of speed up techniques for timetable information873

systems. Networks 57(1):38–52, URL http://dx.doi.org/10.1002/net.20382.874

http://dx.doi.org/10.1137/S0097539798337716
http://dx.doi.org/10.1007/978-3-642-03456-5_24
http://dx.doi.org/10.1007/978-3-642-03456-5_24
http://dx.doi.org/10.1007/978-3-642-03456-5_24
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1090/dimacs/074/07
http://dx.doi.org/10.1137/1.9781611974317.2
http://dx.doi.org/10.1137/1.9781611974317.2
http://dx.doi.org/10.1137/1.9781611974317.2
http://dx.doi.org/10.1002/net.20382

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 29

Baum M, Buchhold V, Sauer J, Wagner D, Zündorf T, 2019 UnLimited TRAnsfers for Multi-Modal Route875

Planning: An Efficient Solution. Annual European Symposium on Algorithms (ESA), volume 144, 14:1–876

14:16, URL http://dx.doi.org/10.4230/LIPIcs.ESA.2019.14.877

Baum M, Dibbelt J, Pajor T, Wagner D, 2016 Dynamic time-dependent route planning in road net-878

works with user preferences. Experimental Algorithms, 33–49, URL http://dx.doi.org/10.1007/879

978-3-319-38851-9_3.880

Bentley JL, Ottmann TA, 1979 Algorithms for reporting and counting geometric intersections. IEEE Trans-881

actions on computers C-28(9):643–647, URL http://dx.doi.org/10.1109/TC.1979.1675432.882

Bhatia N, et al., 2010 Survey of nearest neighbor techniques. International Journal of Computer Science and883

Information Security 8(2).884

Brodal GS, Jacob R, 2004 Time-dependent networks as models to achieve fast exact time-table queries. Elec-885

tronic Notes in Theoretical Computer Science 92:3–15, URL http://dx.doi.org/10.1016/j.entcs.886

2003.12.019.887

Brüggemann-Klein A, 1993 Regular expressions into finite automata. Theoretical Computer Science888

120(2):197–213, URL http://dx.doi.org/10.1016/0304-3975(93)90287-4.889

Chen Y, Guizani M, Zhang Y, Wang L, Crespi N, Lee GM, Wu T, 2019 When traffic flow prediction and890

wireless big data analytics meet. IEEE Network 33(3):161–167, URL http://dx.doi.org/10.1109/891

MNET.2018.1800134.892

Cionini A, D’Angelo G, D’Emidio M, Frigioni D, Giannakopoulou K, Paraskevopoulos A, Zaroliagis C, 2017893

Engineering graph-based models for dynamic timetable information systems. Journal of Discrete Algo-894

rithms 46-47:40 – 58, URL http://dx.doi.org/https://doi.org/10.1016/j.jda.2017.09.001.895

Delling D, Dibbelt J, Pajor T, Zündorf T, 2017 Faster Transit Routing by Hyper Partitioning. D’Angelo G,896

Dollevoet T, eds., 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimiza-897

tion, and Systems (ATMOS 2017), volume 59, 8:1–8:14, URL http://dx.doi.org/10.4230/OASIcs.898

ATMOS.2017.8.899

Delling D, Goldberg AV, Pajor T, Werneck RF, 2011a Customizable route planning. International900

Symposium on Experimental Algorithms (SEA), 376–387, URL http://dx.doi.org/10.1007/901

978-3-642-20662-7_32.902

Delling D, Goldberg AV, Razenshteyn I, Werneck RF, 2011b Graph partitioning with natural cuts. Inter-903

national Parallel & Distributed Processing Symposium (IPDPS), 1135–1146 (IEEE), URL http:904

//dx.doi.org/10.1109/IPDPS.2011.108.905

Delling D, Pajor T, Wagner D, 2009 Accelerating multi-modal route planning by access-nodes. European906

Symposium on Algorithms, 587–598, URL http://dx.doi.org/10.1007/978-3-642-04128-0_53.907

Delling D, Pajor T, Werneck RF, 2014 Round-based public transit routing. Transportation Science 49(3):591–908

604, URL http://dx.doi.org/10.1287/trsc.2014.0534.909

Delling D, Sanders P, Schultes D, Wagner D, 2006 Highway hierarchies star. Ninth DIMACS Implementation910

Challenge, 141–174, URL http://dx.doi.org/10.1090/dimacs/074/06.911

Demetrescu C, Goldberg AV, Johnson DS, 2009 The Shortest Path Problem: Ninth Dimacs Implementation912

Challenge (American Mathematical Society), URL http://dx.doi.org/10.1090/dimacs/074.913

Dibbelt J, Pajor T, Strasser B, Wagner D, 2013 Intriguingly simple and fast transit routing. Interna-914

tional Symposium on Experimental Algorithms (SEA), 43–54, URL http://dx.doi.org/10.1007/915

978-3-642-38527-8_6.916

Dibbelt J, Pajor T, Wagner D, 2015 User-constrained multimodal route planning. Journal of Experimental917

Algorithmics (JEA) 19, URL http://dx.doi.org/10.1145/2699886.918

Dijkstra EW, 1959 A note on two problems in connexion with graphs. Numerische mathematik 1(1):269–271,919

URL http://dx.doi.org/10.1007/BF01386390.920

Djidjev HN, 1982 On the problem of partitioning planar graphs. SIAM Journal on Algebraic Discrete Methods921

3(2):229–240, URL http://dx.doi.org/10.1137/0603022.922

http://dx.doi.org/10.4230/LIPIcs.ESA.2019.14
http://dx.doi.org/10.1007/978-3-319-38851-9_3
http://dx.doi.org/10.1007/978-3-319-38851-9_3
http://dx.doi.org/10.1007/978-3-319-38851-9_3
http://dx.doi.org/10.1109/TC.1979.1675432
http://dx.doi.org/10.1016/j.entcs.2003.12.019
http://dx.doi.org/10.1016/j.entcs.2003.12.019
http://dx.doi.org/10.1016/j.entcs.2003.12.019
http://dx.doi.org/10.1016/0304-3975(93)90287-4
http://dx.doi.org/10.1109/MNET.2018.1800134
http://dx.doi.org/10.1109/MNET.2018.1800134
http://dx.doi.org/10.1109/MNET.2018.1800134
http://dx.doi.org/https://doi.org/10.1016/j.jda.2017.09.001
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.8
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.8
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.8
http://dx.doi.org/10.1007/978-3-642-20662-7_32
http://dx.doi.org/10.1007/978-3-642-20662-7_32
http://dx.doi.org/10.1007/978-3-642-20662-7_32
http://dx.doi.org/10.1109/IPDPS.2011.108
http://dx.doi.org/10.1109/IPDPS.2011.108
http://dx.doi.org/10.1109/IPDPS.2011.108
http://dx.doi.org/10.1007/978-3-642-04128-0_53
http://dx.doi.org/10.1287/trsc.2014.0534
http://dx.doi.org/10.1090/dimacs/074/06
http://dx.doi.org/10.1090/dimacs/074
http://dx.doi.org/10.1007/978-3-642-38527-8_6
http://dx.doi.org/10.1007/978-3-642-38527-8_6
http://dx.doi.org/10.1007/978-3-642-38527-8_6
http://dx.doi.org/10.1145/2699886
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1137/0603022

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
30 Transportation Science 00(0), pp. 000–000, © 0000 INFORMS

DOT U, 2015 Beyond traffic 2045: Trends and choices. Technical Report https://www.transportation.923

gov/sites/dot.gov/files/docs/BeyondTraffic_tagged_508_final.pdf, US Department of Trans-924

portation.925

Eppstein D, Goodrich MT, 2008 Studying (non-planar) road networks through an algorithmic lens. ACM926

SIGSPATIAL international conference on Advances in geographic information systems (ACM), URL927

http://dx.doi.org/10.1145/1463434.1463455.928

Falek A, 2019 osm-to-graph. https://github.com/aminefalek/osm-to-graph.929

Falek A, 2021a Muse: Multimodal separators for efficient route planning in transportation networks. Zenodo930

dataset, URL http://dx.doi.org/10.5281/zenodo.5276749.931

Falek A, 2021b Muse: Multimodal separators for efficient route planning in transportation networks. https:932

//github.com/aminefalek/muse.933

Garey MR, Johnson DS, 2002 Computers and intractability, volume 29 (W. H. Freeman & Co.).934

Geisberger R, Sanders P, Schultes D, Delling D, 2008 Contraction hierarchies: Faster and simpler hierarchical935

routing in road networks. International Workshop on Experimental and Efficient Algorithms (WEA),936

319–333, URL http://dx.doi.org/10.1007/978-3-540-68552-4_24.937

Geofabrik O, 2019 Openstreetmap data extract. URL https://download.geofabrik.de/europe/france/938

ile-de-france.html.939

Giannakopoulou K, Paraskevopoulos A, Zaroliagis C, 2019Multimodal dynamic journey-planning. Algorithms940

12(10):213, URL http://dx.doi.org/10.3390/a12100213.941

Goldberg AV, Harrelson C, 2005 Computing the shortest path: A* search meets graph theory. ACM-SIAM942

symposium on Discrete algorithms (SODA), 156–165.943

Goldberg AV, Kaplan H, Werneck RF, 2006 Reach for a*: Shortest path algorithms with preprocessing. Ninth944

DIMACS Implementation Challenge, 93–140, URL http://dx.doi.org/10.1090/dimacs/074/05.945

Hart PE, Nilsson NJ, Raphael B, 1968 A formal basis for the heuristic determination of minimum cost paths.946

IEEE Transactions on Systems Science and Cybernetics 4(2):100–107, URL http://dx.doi.org/10.947

1109/TSSC.1968.300136.948

Hilger M, Köhler E, Möhring RH, Schilling H, 2009 Fast point-to-point shortest path computations with949

arc-flags. Ninth DIMACS Implementation Challenge, volume 74, 41–72, URL http://dx.doi.org/10.950

1090/dimacs/074/03.951

Huber S, Rust C, 2016 Calculate travel time and distance with openstreetmap data using the open952

source routing machine (osrm). The Stata Journal 16(2):416–423, URL http://dx.doi.org/10.1177/953

1536867X1601600209.954

Ile de France Mobilités, 2020 Données offre de transport ile-de-france mobilités au format gtfs.955

https://data.iledefrance-mobilites.fr/explore/dataset/offre-horaires-tc-gtfs-idf/956

information/.957

Karypis G, Kumar V, 1998 A fast and high quality multilevel scheme for partitioning irregular958

graphs. SIAM Journal on scientific Computing 20(1):359–392, URL http://dx.doi.org/10.1137/959

S1064827595287997.960

Kaufman DE, Smith RL, 1993 Fastest paths in time-dependent networks for intelligent vehicle-highway sys-961

tems application. Journal of Intelligent Transportation Systems 1(1), URL http://dx.doi.org/10.962

1080/10248079308903779.963

Kernighan BW, Lin S, 1970 An efficient heuristic procedure for partitioning graphs. Bell system technical964

journal 49(2):291–307, URL http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x.965

Kirchler D, Liberti L, Pajor T, Wolfler Calvo R, 2011 Unialt for regular language contrained shortest paths966

on a multi-modal transportation network. Workshop on Algorithmic Approaches for Transportation967

Modelling, Optimization, and Systems (ATMOS), URL http://dx.doi.org/10.4230/OASIcs.ATMOS.968

2011.64.969

Maue J, Sanders P, Matijevic D, 2010 Goal-directed shortest-path queries using precomputed cluster distances.970

Journal of Experimental Algorithmics (JEA) 14:3–2, URL http://dx.doi.org/10.1007/11764298_971

29.972

https://www.transportation.gov/sites/dot.gov/files/docs/BeyondTraffic_tagged_508_final.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/BeyondTraffic_tagged_508_final.pdf
https://www.transportation.gov/sites/dot.gov/files/docs/BeyondTraffic_tagged_508_final.pdf
http://dx.doi.org/10.1145/1463434.1463455
https://github.com/aminefalek/osm-to-graph
http://dx.doi.org/10.5281/zenodo.5276749
https://github.com/aminefalek/muse
https://github.com/aminefalek/muse
https://github.com/aminefalek/muse
http://dx.doi.org/10.1007/978-3-540-68552-4_24
https://download.geofabrik.de/europe/france/ile-de-france.html
https://download.geofabrik.de/europe/france/ile-de-france.html
https://download.geofabrik.de/europe/france/ile-de-france.html
http://dx.doi.org/10.3390/a12100213
http://dx.doi.org/10.1090/dimacs/074/05
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1090/dimacs/074/03
http://dx.doi.org/10.1090/dimacs/074/03
http://dx.doi.org/10.1090/dimacs/074/03
http://dx.doi.org/10.1177/1536867X1601600209
http://dx.doi.org/10.1177/1536867X1601600209
http://dx.doi.org/10.1177/1536867X1601600209
https://data.iledefrance-mobilites.fr/explore/dataset/offre-horaires-tc-gtfs-idf/information/
https://data.iledefrance-mobilites.fr/explore/dataset/offre-horaires-tc-gtfs-idf/information/
https://data.iledefrance-mobilites.fr/explore/dataset/offre-horaires-tc-gtfs-idf/information/
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1080/10248079308903779
http://dx.doi.org/10.1080/10248079308903779
http://dx.doi.org/10.1080/10248079308903779
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.64
http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.64
http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.64
http://dx.doi.org/10.1007/11764298_29
http://dx.doi.org/10.1007/11764298_29
http://dx.doi.org/10.1007/11764298_29

Falek et al.: MUSE: Multimodal Separators for Efficient Route Planning in Transportation Networks
Transportation Science 00(0), pp. 000–000, © 0000 INFORMS 31

Mooney P, Minghini M, et al., 2017 Mapping and the Citizen Sensor, chapter A review of OpenStreetMap973

data, 37–59 (Ubiquity Press), URL http://dx.doi.org/10.5334/bbf.c.974

Müller-Hannemann M, Schulz F, Wagner D, Zaroliagis C, 2007 Timetable information: Models and algo-975

rithms. Algorithmic Methods for Railway Optimization, 67–90, URL http://dx.doi.org/10.1007/976

978-3-540-74247-0_3.977

Nannicini G, Delling D, Liberti L, Schultes D, 2008 Bidirectional a* search for time-dependent fast paths.978

International Workshop on Experimental and Efficient Algorithms, 334–346, URL http://dx.doi.979

org/10.1007/978-3-540-68552-4_25.980

Navitia Open Data, 2020 France public transport data. https://navitia.opendatasoft.com/explore/981

?refine.geographicarea=France.982

Orda A, Rom R, 1990 Shortest-path and minimum-delay algorithms in networks with time-dependent983

edge-length. Journal of the ACM (JACM) 37(3):607–625, URL http://dx.doi.org/10.1145/79147.984

214078.985

Pyrga E, Schulz F, Wagner D, Zaroliagis C, 2008 Efficient models for timetable information in public trans-986

portation systems. Journal of Experimental Algorithmics (JEA) 12, URL http://dx.doi.org/10.987

1145/1227161.1227166.988

Pyrga E, Schulz F, Wagner D, Zaroliagis CD, 2004 Experimental comparison of shortest path approaches for989

timetable information. ALENEX/ANALC, 88–99 (Citeseer).990

Sanders P, Schulz C, 2012 Distributed evolutionary graph partitioning. Workshop on Algorithm Engineering991

and Experiments (ALENEX), 16–29 (SIAM), URL http://dx.doi.org/10.5555/2790265.2790267.992

Sauer J, Wagner D, Zündorf T, 2020 Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA.993

18th International Symposium on Experimental Algorithms (SEA), volume 160, 16:1–16:14, URL http:994

//dx.doi.org/10.4230/LIPIcs.SEA.2020.16.995

Schilling H, 2012 Tomtom navigation–how mathematics help getting through traffic faster. International996

Symposium on Mathematical Programming (ISMP).997

Sedgewick R, Vitter JS, 1986 Shortest paths in euclidean graphs. Algorithmica 1:31–48, URL http://dx.998

doi.org/10.1007/BF01840435.999

Strasser B, 2017 Dynamic time-dependent routing in road networks through sampling. Workshop on Algo-1000

rithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS), URL http:1001

//dx.doi.org/10.4230/OASIcs.ATMOS.2017.3.1002

Thomson RC, Richardson DE, 1995 A graph theory approach to road network generalisation. International1003

cartographic conference, 1871–1880.1004

Ulloa L, Lehoux-Lebacque V, Roulland F, 2018 Trip planning within a multimodal urban mobility. IET Intel-1005

ligent Transport Systems 12(2):87–92(5), URL http://dx.doi.org/10.1049/iet-its.2016.0265.1006

Yang F, Vereshchaka A, Dong W, 2018 Predicting and optimizing city-scale road traffic dynamics using1007

trajectories of individual vehicles. IEEE International Conference on Big Data (Big Data), 173–180,1008

URL http://dx.doi.org/10.1109/BigData.2018.8622356.1009

http://dx.doi.org/10.5334/bbf.c
http://dx.doi.org/10.1007/978-3-540-74247-0_3
http://dx.doi.org/10.1007/978-3-540-74247-0_3
http://dx.doi.org/10.1007/978-3-540-74247-0_3
http://dx.doi.org/10.1007/978-3-540-68552-4_25
http://dx.doi.org/10.1007/978-3-540-68552-4_25
http://dx.doi.org/10.1007/978-3-540-68552-4_25
https://navitia.opendatasoft.com/explore/?refine.geographicarea=France
https://navitia.opendatasoft.com/explore/?refine.geographicarea=France
https://navitia.opendatasoft.com/explore/?refine.geographicarea=France
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1145/79147.214078
http://dx.doi.org/10.1145/1227161.1227166
http://dx.doi.org/10.1145/1227161.1227166
http://dx.doi.org/10.1145/1227161.1227166
http://dx.doi.org/10.5555/2790265.2790267
http://dx.doi.org/10.4230/LIPIcs.SEA.2020.16
http://dx.doi.org/10.4230/LIPIcs.SEA.2020.16
http://dx.doi.org/10.4230/LIPIcs.SEA.2020.16
http://dx.doi.org/10.1007/BF01840435
http://dx.doi.org/10.1007/BF01840435
http://dx.doi.org/10.1007/BF01840435
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.3
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.3
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.3
http://dx.doi.org/10.1049/iet-its.2016.0265
http://dx.doi.org/10.1109/BigData.2018.8622356

	Introduction
	Related Work
	Road Networks
	Public Transit networks
	Multimodal route planning
	Scalar approaches:
	Pareto sets:
	Label constrained:

	Model and Assumptions
	Road Network (private cars, taxis, and rental vehicles)
	Foot Network
	Bicycle Network
	Public Transit Network
	Assembling the Multi-modal Network

	MUSE: The Algorithm
	Stage 1: Partitioning The Graph
	Stage 2: Computing The Overlay
	Stage 3: Solving Queries
	Handling time-dependent weights and unpredictable evolutions

	Experimental Evaluation
	Evaluation Setup
	Preprocessing
	MUSE:
	SDALT:

	Queries

	Conclusion and Future Work

