
Deploying Near-Optimal Delay-Constrained Paths with Segment Routing in
Massive-Scale Networks

Submitted to Computer Network, october 2021

Jean-Romain Luttringera,∗, Thomas Alfroya, Pascal Mérindola, Quentin Bramasa, François Cladb, Cristel Pelssera

aICube, University of Strasbourg, France
bCisco Systems, California

Abstract

With a growing demand for quasi-instantaneous communication services such as real-time video streaming, cloud gam-
ing, and industry 4.0 applications, multi-constraint Traffic Engineering (TE) becomes increasingly important. While
legacy TE management planes like MPLS have proven laborious to deploy, Segment Routing (SR) drastically eases the
deployment of TE paths and is thus increasingly adopted by Internet Service Providers (ISP). There is now a clear
need in computing and deploying Delay-Constrained Least-Cost paths (DCLC) with SR for real-time interactive services
requiring both low delay and high bandwidth routes. However, most current DCLC solutions are not tailored for SR.
They also often lack efficiency (particularly exact schemes) or guarantees (by relying on unbounded heuristics). Similarly
to approximation schemes, we argue that the actual challenge is to design an algorithm providing both performances and
strong guarantees. However, conversely to most of these schemes, we also consider operational constraints to provide a
practical, high-performance implementation.

In this work, we leverage inherent limitations in the accuracy of delay measurements and account for the operational
constraint added by SR to design a new algorithm, BEST2COP, providing guarantees and performance in all cases. Our
proposal efficiently deals with the complexity of DCLC in SR domains (DCLC-SR) thanks to simple but efficient data
structures and amortized procedures specifically tailored to deal with the three metrics (delay, IGP cost, and the number
of segments). We show that BEST2COP outperforms a state-of-the-art algorithm on both random and real networks of
up to 1000 nodes. Relying on commodity hardware with a single thread, our algorithm retrieves all non-superfluous
3-dimensional routes in only 250ms and 100ms respectively. This execution time is further reduced using multiple
threads, as the design of BEST2COP enables a speedup almost linear in the number of cores. The computing load is
uniformly balanced across cores. Finally, we extend BEST2COP to deal with massive scale ISP by leveraging the multi-
area partitioning of these deployments. Thanks to our new topology generator specifically designed to model realistic
patterns in such massive IP networks, we show that BEST2COP can solve DCLC-SR in approximately 1 second even for
ISP having more than 100 000 routers.

Keywords: Traffic Engineering, Segment Routing, DCLC, CSP, Delay Constrained Least Cost, QoS Routing

1. Introduction

Latency is critical in modern networks for various ap-
plications. The constraints on the delay are indeed in-
creasingly stringent. For example, in financial networks,
vast amounts of money depend on the ability to receive
information in real-time. Likewise, technologies such as
5G slicing, in addition to requiring significant bandwidth
availability, demand strong end-to-end delay guarantees
depending on the service they aim to provide, e.g., less

∗Corresponding author
Email addresses: jr.luttringer@unistra.fr (Jean-Romain

Luttringer), talfroy@unistra.fr (Thomas Alfroy),
merindol@unistra.fr (Pascal Mérindol), bramas@unistra.fr
(Quentin Bramas), fclad@cisco.com (François Clad),
pelsser@unistra.fr (Cristel Pelsser)

than 15ms for low latency applications such as motion con-
trol for industry 4.0, VR or video games [58]. For such in-
teractive applications, the latency is as critical as the IGP
cost.

This Interior Gateway Protocol cost is defined as
an additive metric that usually reflects both the link’s
bandwidth and the operator’s load distribution choices
on the topology. Paths within an IGP are computed by
minimizing this cost. Thus, although delay constraints
are increasingly important, they should not be enforced
to the detriment of the IGP cost. With minimal IGP
distances, the traffic benefits from high-bandwidth links
and follows the operator’s intent in managing the network
and its load. With bounded delays, the traffic can benefit
from paths allowing for sufficient interactivity. It is thus
relevant to minimize the IGP cost while enforcing an

Preprint submitted to Elsevier October 19, 2021

ar
X

iv
:2

11
0.

09
32

0v
1

 [
cs

.N
I]

 1
8

O
ct

 2
02

1

upper constraint on the latency. Computing such paths
requires to solve DCLC, an NP-Hard problem standing
for Delay Constrained Least Cost.

9.72ms ; 3

6.79ms ; 4

3.97ms ; 10

971km ; 100Gbps
714km ; 10Gbps

250km ; 100Gbps

854km ; 2
00Gbps57

6k
m

 ;
20

0G
bp

s

317km ; 200Gbps

FRANKFURT

VIENNA

MILAN

BUDAPEST

GENEVA

Figure 1: Practical relevance of DCLC in the GEANT network. IGP
costs are deduced from the bandwidth of each link. Depending on
their needs (in terms of delay and bandwidth), applications can opt
for three non-comparable paths between Frankfurt and Vienna.

DCLC: a relevant issue. The practical relevance of
DCLC can be illustrated on real networks, as displayed
by Fig. 1. This map is a sample of the GEANT tran-
sit network [3]. As fibers often follow major roads, we
rely on real road distances to infer the propagation delay
of each link while the bandwidth, and so the estimated
IGP cost, matches the indications provided by GEANT.
A green link has an IGP cost of 1 while it is 2 and 10
respectively for the yellow and pink ones. When consid-
ering the couple Frankfurt-Vienna, this network exhibits
three non-comparable (or non-dominated) paths, forming
the Pareto-front of the paths between the two cities. These
paths, as well as their delays and IGP distances, are pro-
vided in the legend.

Such paths offer diverse options: either solely the delay
matters and the direct link (in pink) should be preferred,
or the ISP prefers to favor high capacity links, and the
green path, minimizing the IGP cost, should be used. The
yellow path, however, offers an interesting compromise.
Out of all paths offering a latency well-below 10ms, it
is the one minimizing the IGP cost. Thus, it allows to
provide strict Service-Level Agreement (< 9ms), while
considering the IGP cost. These kid of paths, retrieved by
solving DCLC, provide more options by enabling tradeoffs
between the two most important networking metrics.
Applications such as videoconferences, for example,
can then benefit both from real-time interactive voice
exchange (delay) and high video quality (bandwidth).
In addition, IGP costs are also tuned to represent the
operational costs. Any deviation from the shortest IGP
paths thus results in additional costs for the operator.
For all these reasons, there exist a clear interest for
algorithms able to solve and deploy DCLC paths [18].
However and so far, while this problem has received a lot
of attention in the last decades from the network research
community [30, 24], no technologies were available for an
efficient deployment of such paths.

Segment Routing & DCLC’s rebirth. Segment
Routing (SR) is a vibrant technology gathering traction
from router vendors, network operators and academic
communities [53, 68]. Relying on a combination of strict
and loose source routing, SR enables to deviate the traffic
from the shortest IGP paths through a selected set of
nodes and/or links. Such deviation may for example allow
to route traffic through a path with lower latency. These
deviations are encoded in the form of segments within the
packet itself. To prevent any packet forwarding degrada-
tion, the number of deviations one can encode is limited
and should be taken into consideration when computing
paths. While this technology is adequate to support a
variety of services, operators mainly deploy SR in the
hopes of performing fine-grained and ECMP-friendly
tactical Traffic-Engineering (TE) [5], due to its far lesser
overhead compared to RSVP-TE [20]. Our discussion
with network vendors further reveal a clear desire from
operators to efficiently compute DCLC paths deployable
with Segment Routing [18]. Such a solution should thus
not only encompass Segment Routing, with its constraints
on the number of segments that can be pushed at line
rate, but also fare well on large sized networks observable
in the near future.

Challenges. In this paper, we propose a simple effi-
cient algorithm, called BEST2COP, that makes DCLC-TE
possible on (very) large scale networks. We leverage SR
to reach computation times suitable for real-time routing.
To achieve our goal, we solve several challenges: (i) cap,
or even minimize, the number of segments to consider the
packet manipulation overhead supported by routers, (ii)
scale with very large modern networks, and (iii) provide
near-exact algorithms with bounded error margin and
strong guarantees despite the difficulty induced by consid-
ering three metrics (cost, delay, and number of segments)1.

Efficiently encompassing the Maximum Segment
Depth constraint (MSD). While SR can add instruc-
tions within the packets to guide them through the desired
paths, the number of instructions is limited to MSD (≈ 10
with good hardware). Fortunately, this constraint does
not prevent SR from being used to deploy DCLC paths.
Indeed, according to our study (Fig. 2), the number of
required segments does not exceed MSD for all constraints
between 1 and 100ms, in massive-scale transit networks
(≈ 50.000 nodes scattered in multiple areas) with realistic
IGP costs. Nevertheless, the number of segments required
to encode paths should still be taken into account, to
avoid computing non-deployable paths exceeding MSD
segments. Indeed, in difficult cases, where computation

1While difficult instances are unlikely to occur in practice, our
algorithm can tackle even such corner cases. Thus, our proposal is
not only efficient in practice but provably correct and efficient even
for worst theoretical cases.

2

times would increase significantly due to the difficulty
of finding a suitable path for the constraints, the limit
on MSD serves as a safeguard to cut the computation
short. MSD prevents the rare use of inefficient paths with
regard to the IGP cost. While MSD adds an additive
metric to consider (the number of segments), BEST2COP
manages, through adequate data-structures and graph
exploration, to natively manipulate the list of segments
instead of having to convert physical paths in segment
lists a posteriori, and control their size live, ensuring the
computation of paths requiring at most MSD segments.

Towards massive-scale networks. While we already
showed in [50] that computing DCLC paths for Segment
Routing (DCLC-SR) is possible in far less than a second
on networks of up to 1000 nodes, scaling to ten or a
hundred times more routers remains an open issue. Some
current SR deployments exhibit more than ten thou-
sand nodes and continue to grow even in medium-sized
countries [53]. Given that most operators deploy SR for
TE purposes [5], it becomes clear that TE algorithms
must adapt to massive-scale networks. Our new proposal,
an extension of BEST2COP, aims to deal with such cases
efficiently using a divide-and-conquer approach. Indeed,
massive networks usually rely on both a physical and
logical partitioning, as IGP protocols like OSPF or IS-IS
do not scale well as is. By leveraging this decomposition
in areas, as well as re-designing BEST2COP to benefit from
multi-threaded architectures, it becomes possible to solve
DCLC-SR in a time suited for real-time routing. To evalu-
ate our contribution, we create a topology generator,
YARGG, able to construct realistic massive-scale,
multi-valuated, and multi-area topologies based
solely on geographical data. In such cases, our ex-
tension solves DCLC-SR in ≈ 1 second for ≈ 100 000 nodes.

Bounded error margin and practical delay mea-
surements. DCLC is a well-known NP-Hard prob-
lem [71]. While there exist several ways to solve DCLC
[30], they usually do not consider the underlying deploy-
ment technologies, and often do not offer any guaran-
tees regarding either their computation time or optimality,
both seemingly vital for a real-life deployment. However,
it is worth noting that the delay constraints are usually
formulated at the millisecond granularity and somewhat
arbitrary. Besides, the real end-to-end experienced delay
is often not measured. In practice, end-to-end latency is
induced by the (variable) queueing delay and the (stable)
propagation delay. Both delays may play an important
part in the overall latency, though none can be stated to
be the main factor [64]. When measuring delay for TE, it
is strongly recommended to avoid measuring the queuing
delay (through the use of a priority queue), so that the
measurement remains stable [26, 27]. Varying delay es-
timations may indeed lead to frequent re-computations,
control-plane message exchanges and fluctuating traffic
distribution. The propagation delay, deduced from the

minimum observation within a large enough sampling win-
dow [2], is thus used as a stable lower-bound approxima-
tion of the end-to-end latency. This is a pertinent esti-
mation as in practice, flows benefitting from DCLC paths
will benefit from a queue with high priority and experience
negligible queueing delays.

Because of the arbitrary and imprecise nature of the
constraints and the sole use of the propagation delay
(whose measurement itself exhibits inherent limits in
terms of trueness and accuracy), a bounded error margin
is acceptable. BEST2COP is designed to take advantage,
if needed, of this acceptable margin. While BEST2COP
can return exact solutions, the latter can very easily be
tuned to return approximated ones whose distances to
the optimal solution can be bounded (within whatever
desired acceptable error margin).

Summary and Contributions. By taking into con-
sideration the operational deployment of constrained paths
with SR, the current scale and structure of modern net-
works, as well as the practicality of the delay measures and
constraints, we designed BEST2COP, a simple efficient
algorithm able to solve DCLC-SR in ≈ 1s in large
networks of ≈100 000 nodes.

The main achievements of our proposal follow the orga-
nization of this paper:

• In Section 2, we present SR in further details, discuss
the context and works related to DCLC and then eval-
uate the relevance of SR for deploying DCLC paths;

• In Section 3, we formalize DCLC-SR and its gener-
alization (2COP). In particular, we describe the net-
work characteristics we leverage and define the con-
struct we use to encompass SR (in Sec. 3.1 and Sec. 3.2
respectively). These allow us to propose in Sec. 3.3
a parallelizable version of BEST2COP (initially intro-
duced in [50]) to benefit from multi-threaded archi-
tectures;

• In Sec. 3.4, we extend BEST2COP to deal with massive
scale networks relying on area partitioning (as with
OSPF with a single metric), making it able to solve
DCLC efficiently in graphs of ≈ 100 000 nodes;

• In Sec. 3.5, we formally define the guarantees brought
by BEST2COP and its versatility to solve several TE
optimization problems at once (i.e., the sub-problems
of 2COP), as well as its polynomial complexity;

• Finally, in Section 4, we present our large-scale topol-
ogy generator, YARGG, evaluate BEST2COP on the re-
sulting topologies and compare our proposal to the
relevant state-of-the-art path computation algorithm.

3

2. Back to the Future: DCLC vs SR

2.1. Segment Routing Background and Practical Usages
Segment Routing implements source routing by

prepending packets with a stack of up to MSD segments.
Segments are checkpoints the packet has to go through,
and may either specify a node (such segments are called
node segments), or an interface and its link (adjacency seg-
ments). Routers forward packets according to the topmost
segment, which is removed from the stack when the packet
reaches the associated intermediate destination.

A node segment 𝑣 indicates that the packet should (first)
be forwarded to 𝑣 with ECMP (instead of its final IP desti-
nation). Flows are then load-balanced among the best IGP
next hops for destination 𝑣. Adjacency segments indicate
that the packet should be forwarded through a specific in-
terface. Adjacency segments may be globally advertised,
and thus be used the same way as node segments, or they
may only have a local scope and, as such, can only be in-
terpreted by the router possessing said interface. In this
case, the packet should first be guided to the correspond-
ing router, by preprending the associated node segment.
In the following, as a worst operational case, we consider
the latter scenario. Indeed, the resulting number of seg-
ments can be seen as an upper bound, as node segments
preceding adjacency ones could be removed depending on
the control-plane in use (i.e., if adjacency segments are
globally advertised).

Segment Routing attracted a lot of interest from the
research community. A table referencing most SR-related
work can be found in Ventre et al. [68]. While some SR-TE
works are related to tactical TE problems (like minimiz-
ing the maximum link utilisation) taking indirectly into
account some delay concerns [37, 35], most of the works
related to SR do not focus on DCLC, but rather bandwidth
optimization [11, 25, 13], network resiliency [22, 34], mon-
itoring [48, 10], limiting energy consumption [14] or path
encoding (the translation of path to segment lists) [31, 28].
Aubry [9] proposes a way to compute paths requiring less
then MSD segments while optimizing an additive metric
in polynomial time. The number of segments required is
then evaluated. This work, however, consider only a sin-
gle metric in addition to the operational constraints. The
problem we tackle (i.e., DCLC paths for Segment Routing)
deal with two metrics (in addition to the operational con-
straints). This additional dimension drastically changes
the problem, which then becomes NP-Hard. Some works
use a construct similar to ours (presented in details in
Sec. 3.2.1) in order to prevent the need to perform con-
versions from network paths to segment lists, [43] in par-
ticular. However, the authors of [43] do not pretend to
solve DCLC and, as such, do not tune the structure the
same way (i.e., they do not remove dominated segments,
as explained later on), and simply use their construct to
sort paths lexicographically.

As aforementioned, while operators seem to mainly de-
ploy SR to perform fine grained TE, to the best of our

knowledge, no DCLC variant exists for specifically tackling
SR characteristics and constraints (except for our contri-
bution). Using segments to steer particular flows allows
however to deviate some TE traffic from the best IGP
paths in order to achieve, for example, a lower latency (and
by extension solve DCLC). A realistic example is shown on
Fig. 1 where the node segment Vienna, as well as consid-
ering Vienna as the destination itself, would result in the
packets following the best IGP path from Frankfurt to Vi-
enna, i.e., the green dashed path. To use the direct link
instead (in plain pink) and so minimize the delay between
the two nodes of this example, the associated adjacency
segment would have to be used as it enforces a single link
path having a smaller delay than the best IGP one (in-
cluding here two intermediary routers). Finally, the yellow
path, offering a non dominated compromise between both
metrics (and being the best option if considering a delay
constraint of 8ms), requires the use of the node segment
Budapest to force the traffic to deviate from its best IGP
path in green. Before converting the paths to segment lists
(and actually deploy them with SR), such non dominated
paths need first to be explored. Computing these paths
while ensuring that the number of segments necessary to
encode them remains under MSD is at least as difficult as
solving the standard DCLC problem since an additional
constraint now applies.

2.2. DCLC (Delay-Constrained, Least-Cost), a Well-
known Difficult Problem having many Solutions?

DCLC belongs to the set of NP-Hard problems (as
well as most related multi-constrained path problems).
Intuitively, solely extending the least-cost path is not
sufficient, as the latter may exceed the delay constraint.
Thus, paths with greater cost but lower delays must be
memorized and extended as well. These non-dominated
paths form the Pareto front of the solution, whose size
may grow exponentially with respect to the size of the
graph. However, DCLC in particular, and related variants
and extensions in general, does possess several interesting
applications such as mapping specific flows to their
appropriate paths (in terms of interactive quality). Thus,
these problems have been extensively studied in the past
decades. Many solutions have been proposed so far, as
summarized in these surveys [42, 24, 30]: they range from
to heuristics and approximations to exact algorithms, or
even genetic approaches.

Heuristics. Because DCLC is NP-Hard, several poly-
nomial time heuristics have been designed to limit the
worst case computing time, but at the detriment of any
guarantees. For example, [44] only returns the least-cost
or least-delay path if one is feasible (i.e., respect the con-
straints). More advanced proposals try to explore the de-
lay and cost space simultaneously, by either combining in
a distributed manner the least-cost and least-delay sub-
paths [62, 72, 46] or by aggregating both metrics into one
in a more or less intricate manner.

4

Aggregating metrics in a linear fashion [38, 8] preserves
the subpaths optimality principle (isotonicity of best single-
metric paths) and therefore allows to use standard shortest
paths algorithms. However, it leads to a loss of relevant in-
formation regarding the quality and feasibility of the com-
puted paths [71], in particular if the hull of the Pareto
Front is not convex. Some methods try to mitigate this
effect by using a 𝑘-shortest path approach to possibly find
more feasible paths [39, 40], but such an extension may re-
sult in a large increase of execution time and may not pro-
vide more guarantees. Other heuristics rely on non-linear
metric aggregation. While it seems to prevent loss of rel-
evant information, at first glance, such algorithms expose
themselves to maintain all non-dominated paths (towards
all nodes) as the isotonicity does not hold anymore (while
it holds with linear metrics). Since the Pareto Front may
be exponential with respect to the size of the graph, those
algorithms either simply impose a hard limit on the num-
ber of paths that can be maintained (e.g., TAMCRA [15]
and LPH [70]), or specifically chose the ones to maintain
through previously acquired knowledge (HMCOP [41]).
Finally, other works like [17, 32] rely on heuristics designed
to solve a variant of DCLC, the MCP problem (Multi-
Constrained Paths, the underlying NP-Complete decision
version of DCLC – with no optimization objective). It
mainly consists of sequential MCP runs using a conserva-
tive cost constraint iteratively refined.

Relying on heuristics is tempting, but their lack of
guarantees can prevent to enforce strict SLAs even
when a suitable path actually exists. One can argue
it is particularly unfortunate, as DCLC is only weakly
NP-hard: it can be solved exactly in pseudo-polynomial
time, i.e., polynomial in the numerical value of the
input [23]. Said otherwise, DCLC is polynomial in the
smallest largest weight of the two metrics once translated
to integers. Consequently it is possible to design FPTAS2

solving DCLC while offering strong guarantees [57].

Approximations. The common principle behind these
schemes is to reduce the precision (and/or magnitude) of
the considered metrics. This can be performed either di-
rectly, by scaling and rounding the weights of each link,
or indirectly, by dividing the solution space into intervals
and only maintaining paths belonging to different inter-
vals (Interval partitioning) [63]. Scaling methods usually
consider either a high level dynamic programming scheme
or a low level practical Dijkstra/Bellman-Ford core with
pseudo-polynomial complexity, and round the link costs to
turn their algorithms into an FPTAS (see for example Has-
sin [36], Ergun et al. [16] or Lorenz and Raz [47] methods).
Goel et al. [29], in particular, chose to round the delay in-
stead of the cost and can consider multiple destinations
(as our own algorithm).

Most interval partitioning solutions explore the graph
through a Bellman-Ford approach. The costs of the

2Fully Polynomial Time Approximation Scheme.

paths are mapped to intervals, and only the path with
the lowest delay within a given interval is kept. The
size of the intervals thus introduces a bounded error
factor [36, 66]. In particular, HIPH [65] offers a dynamic
approach between an approximation and exact scheme.
It proposes to maintain up to 𝑥 non-dominated paths for
each node and stores eventual additional paths using an
interval partitioning strategy. This allows the algorithm
to be exact on simple instances (resulting in a limited
Pareto front, i.e., polynomial in the number of nodes,
in particular when it is bounded by 𝑥) and offer strong
guarantees on more complex ones. This versatility is an
interesting feature, as most real-life cases are expected
to be simple instances with a bounded Pareto front size,
in particular because one of the metric may be coarse
by nature. For these reasons, not only approximation
schemes can offer practical solutions (with a bounded
margin error) but also exact algorithms (with controlled
performance), as they may be viable in terms of comput-
ing time for simple real-life IP networking instances.

Exact methods. Numerous exact methods have in-
deed also been studied extensively to solve DCLC. Some
methods simply use a 𝑘-shortest path approach to list all
paths within the Pareto front [55, 56]. On the other hand,
Constrained Bellman-Ford [69] (ironically, also called Con-
strained Dijkstra as it uses a priority queue – denoted PQ
in the following) explores paths by increasing delays and
lists all non-dominated paths towards each node. Sev-
eral algorithms use the same principle but order the paths
differently within the queue, relying either on a lexico-
graphical ordering, ordered aggregated sums, or a sim-
ple FIFO/LIFO ordering [51, 52, 12]. Most notably, A*
Prune [45] is a multi-metric adaptation3 of A* relying on a
PQ where paths known to be unfeasible are pruned. Two-
phase methods [61] first find paths lying on the convex
hull of the Pareto front through multiple Dijkstra runs,
before finding the remaining non-dominated path through
implicit enumerations.

Finally, SAMCRA [67] is a popular and well-known
multi-constrained path algorithm. Similarly to other
Dijkstra-based algorithms, SAMCRA relies on a PQ to
explore the graph but instead of the traditional lexico-
graphical ordering, it relies on non-linear cost aggregation.
Among feasible paths (others are natively ignored) it first
considers the one that minimizes its maximum distance
to the multiple constraints. Such a path ranking to deal
with the PQ is supposed to increase its performance with
respect to other PQ organizations.

As we have seen so far, while many solutions exist, most
possess certain drawbacks or lack certain features to rec-
oncile both the practice and the theory. Heuristics do not
always allow to retrieve the existing paths enforcing strict
SLAs, while exact solutions are not able to guarantee a

3This adaptation is exact, i.e., not an heuristic, as the estimated
cost underestimates the actual distance towards the destination.

5

Table 1: Qualitative summary of a representative subset of DCLC-compatible algorithms showcasing their practicality, exactitude and
performance. In the Practicality column, the green check-mark indicates whether the algorithm supports the corresponding feature (while the
red cross denotes the opposite). In the Exactitude vs Performance column, the two subcolumns associated which each three scenarios shows
how the latter impact (𝑖) the exactitude (exact, strong guarantees, no guarantees) and (𝑖𝑖) the performance of the algorithm (polynomial
time or not). While the orange tilde denotes strong guarantees in terms of exactitude, green check-marks (and red crosses respectively) either
indicate exact results (no guarantees resp.) or polynomial time execution (exponential at worst resp.) for performance. For both subcolumns
Bounded Pareto Front and Coarse Metric, we consider the case where their spreading is polynomial with respect to the number of vertices
in the input graph (and as such predictable in the design/calibration of the algorithm).

Algorithms Practicality Exactitude vs Performance

Multi-Dest SR Multi-thread Bounded Coarse All
Single Run Ready Ready Pareto Front Metric Cases

LARAC [40] × × × × � × � × �
LPH [70] � × × � � ∼ � × �

HMCOP [41] × × × × � × � × �

HIPH [65] � × × � � � � ∼ �
Hassin [36] × × × ∼ � � � ∼ �

Tsaggouris et al. [66] � × × ∼ � � � ∼ �

Raith et al. [61] × × × � � � � � ×
A* Prune. [45] × × × � � � � � ×
SAMCRA [67] � × × � � � � � ×

BEST2COP � � � � � � � ∼ �

reasonable maximum running time when difficult instances
arise, although both features are essential for real-life de-
ployment. On the other hand, FPTAS can provide both
strong guarantees and a polynomial execution time. How-
ever, they are often found in the field of operational re-
search where, at best, possible networking applications and
assumptions are discussed, but are not investigated. Be-
cause of this, the deployment of the computed paths, with
SR and its MSD in particular, is not taken into considera-
tion. It is worth to note that the number of segments is not
a standard metric as it is not simply a weight assigned to
each edge in the original graph (that is, without a specific
construct, it requires to be computed on the fly for each
visited path). Considering the latter can have a drastic
impact on the performance of the algorithms not designed
with this additional metric in mind (see Section 4.4 for
more details). In addition, not all the algorithms presented
here and in Table 1 are single-source multiple-destinations.
Finally, none of these algorithms evoke the possibility to
leverage multi-threaded architectures, an increasingly im-
portant feature as such computations now tend to be per-
formed by dedicated Path Computation Elements or even
in the cloud.

Our contribution, BEST2COP, aims to close this gap by
mixing best existing features (such as providing both a
limited execution time and strong guarantees in terms of
precision in any cases) and adapt them for a practical mod-
ern usage in IP networks deploying SR. Table 1 summa-
rizes some key features of a representative subset of the
related work. Similarly to FPTAS, BEST2COP rounds one
of the metrics of the graph. However, conversely to most
algorithms, BEST2COP does not sacrifice accuracy of the

cost metric, but of the measured delay. Because of the na-
tive inaccuracy of delay measurements (and the arbitrary
nature of its constraint), this does not prevent BEST2COP
from being technically exact in most practical cases. In
addition (and akin to [65]), BEST2COP can easily be tuned
to remain exact on all simple instances with a bounded
Pareto front regardless of the accuracy of the metrics.
Thus, BEST2COP can claim to return exact solutions in
most scenarios and, at worst, ensure strict guarantees in
others (for theoretical exponential instances). In all cases,
BEST2COP possesses a pseudo-polynomial worst-case time
complexity. BEST2COP was designed while keeping the path
deployment aspect of the problem in mind. A single run
allows to find all DCLC paths (and many variants as we
will see latter) to all destinations. The MSD constraint
related to SR is taken into account natively. As a result,
paths requiring more than MSD segments are excluded
from the exploration space. The outer loop of BEST2COP
can be easily parallelized, leading to a non-negligible re-
duction in the execution time. In Sec. 4, relying on a per-
formance comparison between BEST2COP and SAMCRA,
we will show that BEST2COP does not even need to rely
on multi-threading to provide lower computing times than
SAMCRA while returning the exact same solutions (even
though we make SAMCRA benefit from the same advan-
tageous methods explained thoroughly in the remainder
of this paper). This result is particularly interesting as it
remains true even for simple IP network instances. This
comparison also enables to evaluate Dijkstra-oriented so-
lutions (SAMCRA) with respect to Bellman-Ford-oriented
ones (BEST2COP).

Last but not least, BEST2COP has been adapted for multi-

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Segments

0

80000

160000

240000

320000

400000

Co
un

t

Figure 2: Required number of segments for all DCLC solutions, in a
network of 45 000 nodes generated by YARGG, with delay constraints
of up to 100ms.

area networks and leverages the structures of the latter,
allowing it to solve DCLC on very large (≈ 105 000 nodes)
domains in one second. To the best of our knowledge,
such large-scale experiments and results have neither been
conducted nor achieved within SR domains 4.

2.3. SR is Relevant for DCLC: MSD is not a Limit

One can question the choice of SR for deploying DCLC
paths in practice. Indeed, in some cases, in particular if the
metrics are not aligned5, constrained paths may required
more than MSD detours to satisfy a stringent latency con-
straint.

While it has been shown that few segments are required
for most current SR usages(e.g. for TI-LFA or when con-
sidering only one metric) [19, 9], to the best of our knowl-
edge, there is no similar study for our specific use-case,
i.e. massive scale networks with two valuation functions
(delay and IGP cost). This is probably one of the most
exciting challenge for SR as DCLC is a complex applica-
tion. However, since such massive-scale computer network
topologies are not available publicly, we rely on our own
topology generator whose detailed description is available
in section 4.2. Our aim is to obtain realistic networks and
patterns benefiting from both the physical hierarchy and
metrics alignement observed in real cases like in Fig. 1.
These topologies follow a standard OSPF-like area divi-
sion. For this analysis, we opt for a worst case graph

4Some elementary algorithms (such as Multi-constrained Dijk-
stra) and more intricate solutions exhibit impressive computing times
on even more massive road networks [33]. However, such networks
are less dense than IP ones (and with metrics that are also even more
correlated).

5The delay and the IGP costs in particular. Since node segments
represent best IGP paths, the IGP cost and the number of segments
will most likely be aligned by design

having ≈ 45 000 nodes and ≈ 92 000 edges scattered in 140
areas. Both metrics (delay and IGP cost) follow a realistic
pattern described in 4.2.

For this analysis, we keep track, for each destination, of
all the solutions solving DCLC for all delay constraints up
to 100ms, and extract the necessary number of segments.
In other words, we show the number of segments required
to encode all non-dominated (and thus practically relevant
for some given constraint) paths, considering all delay con-
straints up to 100ms. The results are shown in Fig. 2.

One can see that the MSD limit does not seem to be an
issue for most configurations, as most paths require less
than 10 segments. Said differently, we have DCLC-
SR = DCLC in most cases. However, even when con-
sidering realistic IGP weights and delay, there exist some
corner cases which require more than 10 segments. These
cases probably arise from stringent delay constraint (re-
call that we consider all constraints ≤ 100), for which ade-
quate paths may require a larger number of segments than
usual. In addition, the MSD limit depends on the hard-
ware. Thus, for some routers, some DCLC path may not
be deployable.

In practice, this MSD limitation can be mitigated if
needed using a flexible algorithm [59]. Flexible algorithm
(Flex-Algo) allows the IGP to compute shortest paths
based on metrics different from the IGP cost, e.g., the de-
lay. These can in turn also be translated in segments that
can be encoded within the packet. Thus, one can not only
use IGP-oriented segments (representing best IGP paths)
but also delay-oriented segments (representing paths of
lowest delay). These new node segments (i.e., new edges
in our multi-metric SR graph) can help to shift the general
distribution observed in Fig. 2 to the left. Furthermore,
outliers can be dealt with through binding segments [21],
which create a mapping between a segment 𝑏 and a list of
node or adjacency segments. Upon reading 𝑏, a router re-
places it with the corresponding segment list. This allows
to decrease the number of segments to stack at the edge
router.

In summary, while, in some rare cases, the MSD con-
straint may prevent the deployment of non dominated
paths, this is not a real issue in practice. Nearly all DCLC
solutions do not require more than 9 segments. For some
corner-cases, SR can mitigate this theoretical limit by re-
lying on flex-algo or binding segments.

3. BEST2COP(E): Efficient Data Structures and
Algorithms for Massive Scale Networks

This section presents our contributions. We introduce
and define preliminary notations and concepts used to de-
sign BEST2COP, before describing the data structures used
by our algorithm. In section 3.3, we describe our algo-
rithm, BEST2COP, and show how we extend it for massive
scale networks divided in several areas in section 3.4.

We have shown that SR seems indeed appropriate (as
desired) for fine-grained delay-based TE. We thus aim to

7

solve DCLC in the context of an ISP deploying SR, leading
to the DCLC-SR problem that considers the IGP cost, the
propagation delay, and the number of segments.

For readability purposes, we denote:

• 𝑀0 the metric referring to the number of segments,
with the constraint 𝑐0 = MSD applied to it;

• 𝑀1 the delay metric, with a constraint 𝑐1;

• 𝑀2 the IGP metric being optimized.

Given a source 𝑠, DCLC-SR consists in finding, for all
destinations, a segment list verifying two constraints, 𝑐0
and 𝑐1, respectively on the number of segments (𝑀0) and
the delay (𝑀1), while optimizing the IGP distance (𝑀2).
We denote this problem DCLC-SR(𝑠, 𝑐0, 𝑐1). On Fig. 1,
we would have DCLC-SR(Frankfurt , 3, 8) ⊃ Frankfurt −
Budapest − Vienna. This DCLC path (shown in yellow
in Fig 1), is indeed the best option to reach Vienna when
considering an arbitrary delay constraint of 8ms. Since the
best IGP path from Frankfurt to Vienna (the green one)
does not go through Budapest, encoding this DCLC path
requires at least one detour, i.e. one segment (here, a node
segment instructing the packet to go through Budapest
first).

To solve such a challenging problem, efficient data struc-
tures are required. In the following, we first introduce the
constructs we leverage and that benefit from the inaccu-
racy of real delay measurements in particular.

3.1. DCLC and True Measured Delays

As mentioned, DCLC is weakly NP-Hard, and can be
solved exactly in pseudo-polynomial time. In other words,
as long as either the cost of the delay possesses only a lim-
ited number of distinct values (i.e., paths can only take a
limited number of distinct distances), the Pareto front of
the paths’ distances is naturally bounded in size as well,
making DCLC tractable and efficiently solvable6. Such a
metric thus has to be bounded and possess a coarse ac-
curacy (i.e., be discrete). Although this has little impact
when solving DCLC in a theoretical context, it can be
strongly leveraged to solve DCLC efficiently thanks to the
characteristics of real ISP networks.

We argue that the metrics of real ISP networks do in-
deed possess a limited number of distinct values. Although
BEST2COP can be adapted to fit any metric, we argue that
𝑀1, the propagation delay, is the most appropriate one.
Indeed, IGP costs depend on each operators configura-
tions. For example, while some may rely on few spaced

6Metric 𝑀0 is omitted for now as this trivial distance is only re-
quired for SR and discussed in details later. While dealing with a
three-dimensional Pareto front seems more complex at first glance,
we will show that SR eventually reduces the exploration space be-
cause its operational constraint is very tight in practice and easy to
handle efficiently.

weights, other may have possess some intricate weight sys-
tems where small differences in weights may have an im-
pact. Thus, bounding the size of the Pareto front based on
the IGP costs is not only operator-dependant, but might
still result in a very large front.

On the other hand, the delay (i) is likely strongly
bounded, and (ii) can be handled as if having a coarse
accuracy in practice. For TE paths, the delay constraint
is likely to be very strict (10ms or less). Second, while
the delay of a path is generally represented by a precise
number in memory, the actual accuracy, i.e the trueness
𝑡, of the measured delay is much coarser due to technical
challenges [7, 6]. In addition, delay constraints are usually
formulated at the millisecond granularity with a tolerance
margin, meaning that some loss of information is accept-
able.

Thus, floating numbers representing the delays can be
truncated to integers, e.g., taking 0.1ms as unit. This al-
lows to easily bound the number of possible non-dominated
distances to 𝑐1 × 𝛾, with 𝛾 being the desired level of ac-
curacy of 𝑀1 (the inverse of the unit of the delay grain,
here 0.1ms). For example, with 𝑐1 = 100ms and a delay
grain of 0.1ms (𝛾 = 1

0.1 = 10), we have only 1000 distinct
(truncated) non-dominated pairs of distances to track at
worst. This leads to a predictable and bounded Pareto
front. One can then store non-dominated distances within
a static array, indexed on the 𝑀1-distance (as there can
only be one non-dominated couple of distances (𝑀1, 𝑀2)
for a given 𝑀1-distance).

In the remaining of the paper, Γ denotes the size al-
located in memory for this Pareto front array (i.e., Γ =

𝑐1 × 𝛾). When 𝑡, i.e., the real level of accuracy, is lower
(or equal) than 𝛾, the stored delay can be considered to be
exact. More precisely, it is discretized but with no loss of
relevant information. When 𝑡 is too high, one can choose
𝛾 such that 𝛾 < 𝑡, to keep Γ at a manageable value. In
this case, some relevant information can be lost, as the
discretization is too coarse. While this sacrifices the ex-
actitude of the solution (to the advantage of computation
time), our algorithm is still able to provide predictable
guarantees in such cases (i.e., a bounded error margin on
the delay constraint). This is further discussed in Sec-
tion 3.5.2. These discretized delays, enabling us to bound
the number of non-dominated distances, are then used
within our structure used to encompass Segment Routing
natively, the SR graph.

3.2. The SR Graph and 2COP
To solve DCLC-SR efficiently, as well as its comprehen-

sive generalization, 2COP, we rely on a specific construct
used to encompass SR, the delay, and the IGP cost: the
multi-metric SR graph.

3.2.1. Turning the Physical Graph into a Native SR Rep-
resentation

This construct represents the segments as edges to na-
tively deal with the 𝑀0 metric and its constraint, 𝑐0 =

8

MSD. The valuation of each edge depends on the dis-
tance of the path encoded by each segment. While the
weights of an adjacency segment are the weights of its as-
sociated local link, the weights of a node segment are the
distances of the ECMP paths it encodes: the common IGP
cost, and the lowest guaranteed delay, i.e., the worst delay
among all ECMP paths. Hence, computing paths on the
SR graph is equivalent to combining stacks of segments
(and the physical paths they encode), as stacks requiring
𝑥 segments are represented as paths of 𝑥 edges in the SR
graph (agnostically to its actual length in the raw graph).
The SR graph can be built for all sources and destinations
thanks to an All Pair Shortest Path (APSP) algorithm.
Note that this transformation is inherent to SR and leads
to a complexity of 𝑂 (𝑛(𝑛 log(𝑛) +𝑚)), for a raw graph hav-
ing 𝑛 nodes and 𝑚 edges, with the best known algorithms
and data structures. This transformation being required
for any network deploying TE with SR (the complexity
added by our multi-metric extension being negligible), we
do not consider it as part of our algorithm presented later.

This transformation is shown in Fig. 3, which shows the
SR counterpart of the raw graph provided in Fig. 1. To
describe this transformation more formally, let us denote
𝐺 = (𝑉, 𝐸) the original graph, where 𝑉 and 𝐸 respectively
refer to the set of vertices and edges. As 𝐺 can have mul-
tiple parallel links between a pair of nodes (𝑢, 𝑣), we use
𝐸 (𝑢, 𝑣) to denote all the direct links between nodes 𝑢 and 𝑣.
Each link (𝑢, 𝑣) possesses two weights, its delay 𝑤𝐺

1 ((𝑢, 𝑣))
and its IGP cost 𝑤𝐺

2 ((𝑢, 𝑣)). The delay and the IGP cost
being additive metrics, the 𝑀1 and 𝑀2 distances of a path
𝑝 (denoted 𝑑𝐺1 (𝑝) and 𝑑𝐺2 (𝑝) respectively) are the sums of
the weights of its edges.

From 𝐺, we create a transformed multigraph, the SR
graph denoted 𝐺 ′ = (𝑉, 𝐸 ′). While the set of nodes in 𝐺 ′

is the same as in 𝐺, the set of edges differs because 𝐸 ′

encodes segments as edges representing either adjacency
or node segments encoding respectively local physical link
or sets of best IGP paths (with ECMP). The 𝑀𝑖-weight
of an edge in 𝐺 ′ is denoted 𝑤𝐺′

𝑖
((𝑢, 𝑣)). However, to al-

leviate further notations, we denote simply 𝑑𝑖 (𝑝) the 𝑀𝑖

distance of a path in 𝐺 ′ instead of 𝑑𝐺
′

𝑖
(𝑝). Note that if 𝐺

is connected, then 𝐺 ′ is a complete graph thanks to node
segments.

A node segment, encoding the whole set 𝑃𝐺 (𝑢, 𝑣) of
ECMP best paths between two nodes 𝑢 and 𝑣, is repre-
sented by exactly one edge in 𝐸 ′(𝑢, 𝑣). The 𝑀2-weight
𝑤𝐺′
2 ((𝑢, 𝑣)) of a node segment is the common 𝑀2-distance

of 𝑃𝐺 (𝑢, 𝑣). Since, when using a node segment, packets
may follow any of the ECMP paths, we can only guaran-
tee that the delay of the path will not exceed the maximal
delay out of all ECMP paths. Consequently, its 𝑀1-weight
𝑤𝐺′
1 ((𝑢, 𝑣)) is defined as the maximum 𝑀1-distance among

all the paths in 𝑃𝐺 (𝑢, 𝑣). Links representing node seg-
ments in 𝐺 ′ thus verify the following:

𝑤𝐺′
1 ((𝑢, 𝑣)) = max𝑝∈𝑃𝐺 (𝑢,𝑣) 𝑑

𝐺
1 (𝑝)

𝑤𝐺′
2 ((𝑢, 𝑣)) = 𝑑𝐺2 (𝑝) for any 𝑝 ∈ 𝑃𝐺 (𝑢, 𝑣)

Frankfurt

Geneva Vienna

Milan Budapest

32 ; 1

39 ; 10

17 ; 1

60 ; 3

13 ; 2

54 ; 2

47 ; 1

64 ; 2

49 ; 2

86 ; 3

96 ; 3

Delay ; Cost

Node Segment

Adjacency Segment

17 ; 1

Figure 3: The SR graph encodes segments as edges. Plain edges
represent node segments, i.e., sets of ECMP paths. Double-lines are
adjacency segments, here only (Frankfurt ,Vienna), and are visible
only if they are not dominated by other segments. Colored edges
refer to the paths highlighted in Fig. 1.

An adjacency segment corresponds to a link in the graph
𝐺 and is represented by an edge (𝑢𝑥 , 𝑣) in 𝐸 ′(𝑢, 𝑣), whose
weights are the ones of its corresponding link in 𝐺, only if it
is not dominated by the node segment (𝑢, 𝑣)𝐺′ for the same
pair of nodes, i.e., if 𝑤𝐺′

1 ((𝑢, 𝑣)) > 𝑤𝐺
1 ((𝑢𝑥 , 𝑣)), or by any

other non-dominated adjacency segments (𝑢𝑦 , 𝑣), i.e., if
𝑤𝐺
1 ((𝑢𝑦 , 𝑣)) > 𝑤𝐺

1 ((𝑢𝑥 , 𝑣)) or 𝑤𝐺
2 ((𝑢𝑦 , 𝑣)) > 𝑤𝐺

2 ((𝑢𝑥 , 𝑣)),
where (𝑢𝑥 , 𝑣) and (𝑢𝑦 , 𝑣) are two different outgoing links
of 𝑢 in 𝐸 (𝑢, 𝑣)7. Fig. 3 illustrates the result of such a
transformation: one can easily identify the three non dom-
inated paths between Frankfurt and Vienna, bearing the
same colors as in Fig. 1. The green path (i.e., the best
𝑀2 path) is encoded by a single node segment. The pink,
direct path (i.e., the best 𝑀1 path) is encoded by an ad-
jacency segment (the double line in Fig. 3). The yellow
paths (the solution of DCLC-SR(Frankfurt, 3, 8) and an
interesting tradeoff between 𝑀1 and 𝑀2) requires an addi-
tional segment, in order to be routed through Budapest.
Note that in practice, the last segment is unnecessary if it
is a node segment, as the packet will be routed towards its
final IP destination through the best 𝑀2 paths natively.

The main feature of the multi-metric SR graph is that
paths encodable in 𝑥 segments in the raw graph are rep-
resented as paths of 𝑥 + 1 edges within the SR graph8.
By exploring this graph in a fashion akin to the Bellman-
Ford algorithm, the path exploration then naturally iter-
ates over the number of segments. The SR graph allows to
explore the DCLC-SR solution space in an efficient man-
ner by natively ignoring solutions not encodable in (less
than) MSD segments. As a consequence, we only need to
manage a 2D Pareto front within our structures. This con-
struct not only allows us to solve DCLC-SR but also the
problem we refer to as 2COP, a general and practically rel-

7If two links have exactly the same weights, we only add one
adjacency segment in 𝐺′

8In practice, such path could be encodable in fewer segments de-
pending on how the network is configured

9

evant problem regarding the computation of constrained
paths in an SR domain.

3.2.2. The 2COP Problem(s)
Solving DCLC-SR exactly requires, by definition, to

visit the entirety of the Pareto front for all destinations.
However, although only some of these paths are DCLC-SR
solutions for a given delay constraint, all paths visited dur-
ing this exploration may be of some practical interest. In
particular, some of them solve problems similar to DCLC
but with different optimization strategies and constraints.
By simply memorizing the explored paths (i.e., storing
the whole Pareto front within an efficient structure), one
can solve a collection of practically relevant problems. For
instance, one may want to obtain a segment path that
minimizes the delay, another the IGP-cost, or the num-
ber of segments. Solving 2COP consists in finding, for all
destinations, paths optimizing all three metrics indepen-
dently, and respecting the given constraints. We formalize
this collection of problems as 2COP. Solving 2COP en-
ables more versatility in terms of optimization strategies
and handles heterogeneous constraints for different desti-
nations. Simply put, while DCLC-SR is a one-to-many
DCLC variant taking MSD into account, 2COP is more
general as it includes all optimization variants.

With 2COP, one can also actually claim to be highly
flexible regarding constraints (and optimization strate-
gies). Besides the three optimization variants, other prac-
tically relevant heterogeneous problems can be solved. In
practice, a customer may change its needs after the exe-
cution of our algorithm. In particular, one may wish for
a smaller constraint if some requirements become stricter.
Finally, ISPs could be interested in finding destination-
specific constraints and optimizations, i.e., different con-
straints and strategies for each destination.

While algorithms returning only DCLC-SR solutions
would have to be run multiple times and re-calibrated to
solve the situations mentioned above (different optimiza-
tion strategies, stricter constraints, or destination-specific
constraints), our algorithm returns the whole Pareto
Front. With initial constraints 𝑐0, 𝑐1, 𝑐2, BEST2COP solves
2COP, i.e., returns in a single run paths that satisfy
smaller constraints 𝑐′0, 𝑐

′
1, 𝑐

′
2 for any 𝑐′

𝑖
< 𝑐𝑖, 𝑖 = 0, 1, 2.

Definition. 2-Constrained Optimal Paths
(2COP)
Let 𝑓 (𝑀 𝑗 , 𝑐0, 𝑐1, 𝑐2, 𝑠, 𝑑) be a function that returns a
feasible segment path from s to d (if it exists), verifying
all constraints 𝑐𝑖 , 0 ≤ 𝑖 ≤ 2 and optimizing 𝑀 𝑗 , 𝑗 ∈ 0, 1, 2.
For a given source 𝑠 and given upper constraints 𝑐0, 𝑐1, 𝑐2,
we have

2𝐶𝑂𝑃(𝑠, 𝑐0, 𝑐1, 𝑐2) =
⋃

∀𝑑∈𝑉 ,
∀ 𝑗∈{0,1,2},

∀𝑐′
𝑗
≤𝑐 𝑗

𝑓 (𝑀 𝑗 , 𝑐
′
0, 𝑐

′
1, 𝑐

′
2, 𝑠, 𝑑)

Observe that, for any 𝑠 ∈ 𝑉 , DCLC-SR(𝑠, 𝑐0, 𝑐1) consists

of the paths in 2𝐶𝑂𝑃(𝑠, 𝑐0, 𝑐1,∞) minimizing 𝑀2. Looking
at Fig. 3, we have two interesting examples (we rely on the
first capital letter of the cities):

𝑓 (𝑀2, 3, 70,∞, 𝐹,𝑉) = (𝐹, 𝐵) | (𝐵,𝑉) (67, 4)
𝑓 (𝑀1, 3, Γ,∞, 𝐺, 𝐵) = (𝐺, 𝑀) | (𝑀, 𝐵) (77, 4)

In the second example, recall that the M1-distances are
truncated to obtain integer values and Γ is the maximum
𝑐1 constraint we consider (multiplied by 𝛾).

When the delay accuracy allows to reduce the problem’s
complexity sufficiently, BEST2COP can solve exactly any of
the variants within 2COP, regardless of the constrained
metrics or the one to optimize. Our algorithm, BEST2COP
takes the constraints and the SR graph 𝐺 ′ as inputs and
builds in polynomial time an array that can return any de-
sired output of the image of 𝑓 given stricter sub-constraints
instead of relaunching the algorithm. Retrieving the de-
sired output can be performed in constant (or at worst
sub-linear) time.

In Sec. 3.5.2, we detail how we can handle each 2COP
variant with guarantees when the delay accuracy is too
high to provide exact solutions while remaining efficient.
Solving 2COP can be implemented as efficiently as solving
only DCLC-SR.

3.3. Our Core Algorithm for Flat Networks
In this section, we describe BEST2COP, our algorithm ef-

ficiently solving 2COP (and so DCLC-SR). Its implemen-
tation is available online9 as well as a complete detailed al-
gorithmic description.Akin to the SR graph computation,
BEST2COP can be run on a centralized controller but also
by each router. Its design is centered around two prop-
erties. First, the graph exploration is performed so that
paths requiring 𝑖 node segments are found at the 𝑖th + 1 it-
eration10, to natively tackle the MSD constraint. Second,
BEST2COP’s structure is easily parallelizable, allowing to
benefit from multi-core architectures with low overhead.

Simply put, at each iteration, BEST2COP starts by ex-
tending the known paths by one segment (one edge in the
SR graph) in a Bellman-Ford fashion (a not-in-place ver-
sion to be accurate); with the main difference being that
we remember all non-dominated paths. This extension is
performed in a parallel-friendly fashion that prevents data-
races. At the end of an iteration, newly found extended
paths are filtered to reflect the new Pareto front (updated
in a relaxed manner). The remaining paths are in turn
extended at the next iteration. These steps only need to
be performed 𝑀𝑆𝐷 ≈ 10 times as ignored paths are not
SR feasible.

The good performance of BEST2COP does not only re-
sult from such a cut in the exploration space but also

9https://github.com/talfroy/BEST2COP
10Note that each adjacency segment translates to at least one nec-

essary segment, two if they are not globally advertised and not sub-
sequent.

10

https://github.com/talfroy/BEST2COP

from well-chosen data structures benefiting from the lim-
ited accuracy of the delay measurements. This limited ac-
curacy allows to manipulate arrays of fixed size, because
the Pareto front of distances towards each node is lim-
ited to Γ at each step. These simple data structures, fre-
quently used for read/write operations, allow for updating
Pareto fronts very efficiently with an amortized relaxation
cost (conversely to priority queues with Dijkstra-like algo-
rithms). Using a Bellman-Ford approach thus comes with
two advantages: straight-forward parallelism and lazy up-
dates of the Pareto fronts.
BEST2COP’s main procedure is shown in Alg. 1. The

variable pfront, the end result returned by our algorithm,
contains, for each iteration, the Pareto front of the dis-
tances towards each node n. In other words, pfront[i]
contains, at the end of the 𝑖th iteration, all non-dominated
(𝑀1, 𝑀2) distances of feasible paths towards each node n.

The variable dist is used to store, for each vertex, the
best 𝑀2-distance found for each 𝑀1-distance to each node.
Since the 𝑀1-distance of any feasible path in 𝐺 ′ is bounded
by Γ, we can store these distances in a static array dist[v].
Note that during iteration 𝑖, dist will contain the Pareto
front of the current iteration (non-dominated distances of
𝑖 segments) in addition to distances that may be domi-
nated. Keeping such paths in dist allows us to pre-filter
paths before ultimately extracting the Pareto front of the
current iteration from dist later on. This variable is used
in conjunction with pf_cand, a boolean array to remem-
ber which distances within dist were found at the current
iteration.

The variable extendable is a simple list that contains,
at iteration 𝑖, all non-dominated distances discovered at
iteration 𝑖−1. More precisely, extendable is a list of tuples
(𝑢, 𝑑_𝑙𝑖𝑠𝑡), where 𝑑_𝑙𝑖𝑠𝑡 is the list of the best known paths
towards 𝑢. The variable nextextendable is a temporary
variable allowing to construct extendable.

After the initialization of the required data structures,
the main loop starts. This loop is performed MSD times,
or until no feasible paths are left to extend. For each node
𝑣, we extend the non-dominated distances found during
the previous iteration towards 𝑣 (originally (0,0) towards
src). Extending paths in this fashion allows to easily par-
allelize the main for loop (e.g., through a single pragma
Line 14). Indeed, each thread can manage a different node
𝑣 towards which to extend the non-dominated paths con-
tained within extendable. As threads will discover dis-
tances towards different nodes 𝑣 (written in turn in struc-
tures indexed on 𝑣), this prevents data-races. Note that in
raw graphs, this method may lead to uneven workloads, as
not all paths may be extendable towards any node 𝑣. How-
ever, since an SR graph is (at least) complete, any path
may be extended towards any node 𝑣, leading to similar
workloads among threads.

The routine ExtendPaths, detailed in Alg. 2, takes the
list of extendable paths, i.e., non-dominated paths dis-
covered at the previous iteration, and a node 𝑣. It then
extends the extendable paths to 𝑢 further towards 𝑣. The

Algorithm 1: BEST2COP(G’,src)
1 pfront := Array of size MSD
2 forall i ∈ [0..𝑀𝑆𝐷] do
3 pfront[i] := Array of size |𝑉 | of Empty Lists

4 add (pfront[0][src], (0,0))
5 dist := Array of size |𝑉 |
6 forall n ∈ 𝑉 do
7 dist[n] := Array of size Γ

8 dist[src][0] = (0,0)
9 optimal constrained extendable:= Empty List (of Empty

Lists)
10 add (extendable, (src, [(0,0)]))
11 nextextendable:= Array of size |𝑉 | of Empty Lists
12 i:= 1, max_d1:= 0
13 while extendable ≠ [] and i ≤ MSD do
14 #pragma omp parallel for
15 forall v ∈ 𝑉 do
16 pf_cand := Array of size Γ

17 nb, imax := ExtendPaths (v, extendable, pf_cand,
dist[v])

18 max_d1 = max (imax, max_d1)
// How to iterate on dist to get new PF

19 if nb log nb + nb + |pfront[i-1][v]| < max_d1 then
20 d1_it := mergesortd1 (pfront[i-1][v],

pf_cand)
21 else
22 d1_it := [0. . . max_d1]

23 nextextendable[v] = []
// Extract new PF from dist

24 CptExtendablePaths (nextextendable[v],
pfront[i][v], pf_cand, d1_it, dist[v])

// Once each thread done, gather ext. paths
25 extendable = []
26 forall v ∈ 𝑉 | nextextendable[v] ≠ [] do
27 add (extendable, (v,nextextendable[v]))

28 i = i + 1

29 return pfront

11

goal is to update dist[v] with new distances that may be-
long to the Pareto front. Before being added to dist[v],
extended distances go through a pre-filtering. Indeed, the
newly found distance to 𝑣 may be dominated or may be
part of the Pareto front. While this check is performed
thoroughly later, we can already easily prune some paths:
if the new paths to 𝑣 violate either constraint, there is
no point in considering it. Furthermore, recall that dist
stores, for all Γ 𝑀1-distances towards a node, the best re-
spective 𝑀2-distance currently known. Thus, if the new
𝑀2-distance is worst than the one previously stored in
dist at the same 𝑀1 index, this path is necessarily dom-
inated and can be ignored. Otherwise, we add the dis-
tances to dist and update pf_cand to remember that a
new distance which may be non-dominated was added dur-
ing the current iteration. Note that ExtendPaths returns
the number of paths updated within dist, as well as the
highest 𝑀2-distance found. This operation is performed
for efficiency reasons detailed here.

Once returned, dist contains distances either domi-
nated or not. We thus need to extract the Pareto front
of the current iteration. This operation is performed in a
lazy fashion once for all new distances (and not for each
edge extension). Since this Pareto front lies within dist,
one can simply walk through dist by order of increasing
𝑀1 distance from 0 to the highest 𝑀1 distance found yet
and filter all stored distances to get the Pareto front of the
current iteration. This may not be effective as most of the
entries of dist may be empty.

However, the precise indexes of all active distances that
need to be examined (to skip empty entries) can be con-
structed by merging and filtering the union of the current
Pareto front and the new distances (pf_cand). Thus, if
the sorting and merging of the corresponding distance in-
dexes is less costly than walking through dist, the former
method is performed in order to skip empty or useless
entries. Otherwise, a simple walk-through is preferred.
The merging of the 𝑀1 distances of the Pareto front and
new 𝑀1 distances is here showcased at high-level (Line 20,
Alg. 1). The usage of more subtle data structures in prac-
tice allows to perform this operation at the cost of a simple
mergesort.

After the list of distance indexes to check and filter is
computed, the actual Pareto front is extracted during the
CptExtendablePaths procedure, as shown in Alg. 3. This
routine checks whether paths of increasing 𝑀1 distance do
possess a better 𝑀2 distance than the one before them. If
so, the path is non-dominated and is added to the Pareto
front, as well as to the paths that are to be extended at
the next iteration. Finally, once each thread is terminated,
nextextendable contains |𝑉 | lists of non-dominated dis-
tances towards each node. These lists are merged within
extendable, to be extended at the next iteration.

Note that most approximations algorithms relying on
interval partitioning or rounding do not bother with dom-
inance check. In other words, the structure they maintain
is similar to our dist: the best 𝑀2 distance for each 𝑀1

distance to a given node. The latter may thus contain
dominated paths which are considered and extended in
future iterations. In constrast, by maintaining the Pareto
front efficiently, we ensure to consider the minimum set of
paths required to remaining exact, and thus profit highly
from small Pareto front.

Algorithm 2: ExtendPaths(v, extendable, pf_cand,
dist_v)

1 imax = 0, nb = 0
2 forall (u, d_list) ∈ extendable do
3 forall l ∈ E’(u,v) do
4 forall (d1u, d2u) ∈ d_list do
5 d1v = d1u + 𝑤1(l)
6 d2v = d2u + 𝑤2(l)

// Filters: constraints and dist
7 if d1v ≤ c1 and d2v ≤ c2
8 and d2v < dist_v[d1v] then
9 dist_v[d1v] = d2v

10 if not pf_cand[d1v] then
11 nb ++
12 pf_cand[d1v] = True

13 if d1v > imax then
14 imax = d1v

15 return nb, imax

Algorithm 3: CptExtendablePaths
(nextextendable_v, pfront_iv, pf_cand, d2_it, dist_v)

1 last_d2 = ∞
2 forall d1 ∈ d1_it do
3 if dist_v[d1] < last_d2 then
4 add (pfront_iv, (d1,d2))
5 last_d2 = dist_v[d1]
6 if pf_cand[d1] then
7 add (nextextendable_v, (d1,d2))

The output of BEST2COP. When our algorithm termi-
nates, the pfront array contains, for each segment num-
ber, all the distances of non dominated paths from the
source 𝑠 towards each destination 𝑑. To answer the 2COP
problem, for each 𝑑 and for all (stricter sub-)constraints
𝑐′0 ≤ 𝑐0, 𝑐′1 ≤ 𝑐1 and 𝑐′2 ≤ 𝑐2, we can proceed as follows in
practice:

• for 𝑓 (𝑀1, 𝑐
′
0, Γ, 𝑐

′
2, 𝑠, 𝑑), i.e., to retrieve the distance

from 𝑠 to 𝑑 that verifies constraints 𝑐′0 and 𝑐′2 minimiz-
ing 𝑀1, we look for the first element in pfront[𝑐′0 −
1] [𝑑] verifying constraint 𝑐′2 (the first feasible dis-
tance is also the one minimizing 𝑀1 because they are
indexed on the later metric).

• for 𝑓 (𝑀2, 𝑐
′
0, 𝑐

′
1,∞, 𝑠, 𝑑), we look for the last element

in pfront[𝑐′0−1] [𝑑] verifying constraint 𝑐′1. The path
minimizing 𝑀2 being, by design, the last element.

12

• to compute 𝑓 (𝑀0,∞, 𝑐′1, 𝑐
′
2, 𝑠, 𝑑), let us first denote

𝑘 the smallest integer such that pfront[𝑘] [𝑑] con-
tains an element verifying constraints 𝑐′1 and 𝑐′2.
The resulting image is then any of such elements in
pfront[𝑘] [𝑑].

As one might notice, computing 𝑓 (𝑀 𝑗 , 𝑐
′
0, 𝑐

′
1, 𝑐

′
2, 𝑠, 𝑑), 𝑗 =

0, 1, 2 cannot always be achieved in constant time (for 𝑗 = 0
and sub-constraints in particular). Indeed, we favor a sim-
ple data structure. A search in an ordered list of size Γ

is needed for stricter constraints (and may be performed
log(𝑀𝑆𝐷) times when optimizing 𝑀0). To improve the
time efficiency of our solution, each pfront[𝑖] [𝑑] may be
defined as or converted into a static array in the imple-
mentation.

Finally, for simplicity, we did not show in our pseudo-
code the structure and operations that store and extend
the lists of segments. In practice, we store one representa-
tive of the best predecessors and a posteriori retrieve the
lists using a backward induction for each destination.

3.4. For Massive Scale, Multi-Area Networks
As shown in [50], BEST2COP exhibits great performance

on large-scale networks of up to 1000 nodes (≈ 15ms).
However, since the design of BEST2COP implies a dominant
factor of |𝑉 |2 in term of time complexity11 (the SR graph
being complete), recent SR deployments with more than
10 000 nodes would not scale well enough. The sheer scale
of such networks, coupled with the inherent complexity of
TE-related problems, makes 2COP very challenging if not
impossible to practically compute at first glance. In fact,
even BEST2COP originally exceeds 20s when dealing with
≈15 000 nodes. As we will see in the evaluations, this is
much worse with concurrent options.

In this section, we extend BEST2COP in order to deal
efficiently with massive scale networks. By leveraging the
physical and logical partitioning usually performed in such
networks, we manage to solve 2COP in ≈ 1s even in net-
works of 100 000 nodes.

3.4.1. Scalabity in Massive Network & Area decomposition
The scalability issues in large-scale networks do not arise

solely when dealing with TE-related problems. Standard
intra-domain routing protocols encounter issues past sev-
eral thousands of nodes. Naive network design creates a
large, unique failure domain resulting in numerous compu-
tations and message exchanges, as well as tedious manage-
ment. Consequently, networks are usually divided, both
logically and physically, in areas. This notion exists in
both major intra-domain routing protocols (OSPF and IS-
IS). Although they exhibit slight differences, our solution
can be adapted to fit any one of them. In the following, we
consider the standard OSPF architecture and terminology.

Areas can be seen as small, independent sub-networks
(usually of around 100 - 1000 nodes at most). Routers

11The detailed complexity is given in section 3.5.1

within an area maintain a comprehensive topological
database of their own area only. Stub-areas are centered
around the backbone, or area 0. Area Border Routers,
or ABRs, possess an interface in both the backbone area
and a stub area. Being at the intersection of two areas,
they are in charge of sending a summary of the topological
database (the best distance to each node) of one area to the
other. There are usually at least two ABRs between two
areas. We here (and in the evaluation) consider two ABRs,
but the computations performed can be easily extended to
manage more ABRs. Summaries of a non-backbone area
are sent through the backbone. Upon reception, ABRs
inject the summary within their own area. In the end,
all routers possess a detailed topological database of their
own area and the best distances towards destinations out-
side of their own area. Not only does this reduces the
computation cost induced in each area, but only specific
destinations could be advertised between areas (e.g. stub
sub-networks but not transit ones) to mitigate the overall
churn and overhead to ≈ |𝑉 | distances.

3.4.2. Leveraging Area Decomposition
This partitioning creates obvious separators within the

graph, the ABRs. We leverage this native partition to use
a divide-and-conquer approach, running BEST2COP at the
scale of the areas before exchanging and combining the re-
sults. We do not only aim to reduce computation time,
but also to keep the number and size of the exchanged
messages manageable. We here chose to detail a simple
distributed variant of our solution, where each router per-
forms its own computations within its area and combines
it with the distances advertised by the two ABRs of its
area. However, our solution may well be deployed in other
ways, e.g. relying on controllers, or even a single one. In
such cases, the computation could be parallelized per area
if needed. Such discussion is left for future work. Before
discussing our design in detail, we start with a high-level
description of the way we extend BEST2COP:

1. Routers compute the multi-metric SR graph of their
own areas, before running BEST2COP on the resulting
area-SR-graph. Note that ABRs, being adjacent to
two areas, should run BEST2COP twice;

2. ABRs share their pfront structures described in
Alg 1, that is all non-dominated distances, and their
segment lists, towards destinations within their own
area;

3. ABRs now possess all non-dominated paths to oth-
ers ABRs (from running BEST2COP on area 0) and all
non-dominated paths from said distant ABRs to the
destinations in the corresponding areas (through mes-
sage exchange). By combining both paths through a
simple cartesian product and a light post-processing,
one can get all 2COP paths to the destinations within
distant areas. These paths may then be sent to routers

13

A𝑥 A𝑦

A0𝑠

𝐴𝑥 𝐴𝑦

𝑑
𝐵1

𝐵2

𝐵3

b2cop(𝑠, 𝑑) ⊂ 𝐵1 × 𝐵2 × 𝐵3

Figure 4: The set of solutions across areas is obtained from the
cartesian product of the solutions in each area.

within the local area, which in turn perform a similar
processing.

Let us now explain each of these steps in further
detail. For readability purposes, we rely on the following
notations: A𝑥 denotes area 𝑥. 𝐴𝑥 denotes the ABR
between the backbone and A𝑥 . When necessary, we
may distinguish the two ABR 𝐴1𝑥 and 𝐴2𝑥 . Finally,
b2cop(A𝑥 , 𝑠, 𝑑) denotes the results (the non-dominated
paths) from 𝑠 to 𝑑 within A𝑥 . When 𝑑 is omitted, we
consider all routers within A𝑥 as destination. Figure 4
illustrates a network with three areas, 𝑥, 𝑦 and 0, the
backbone area. We can see that a non-dominated path
from 𝑠 to 𝑑 is obtained by concatenating a non-dominated
path in each area. Thus, the set of solutions is the
cartesian product of the sets of solutions in each area.

Working at area scale. To limit the computations
and the volume of information transiting between areas,
routers do not possess the topological information to com-
pute a full, complete SR graph of the whole network:
routers only compute the SR graph of their own area(s).
Once computed, it is tempting to make routers exchange
the SR graph of their area, and run BEST2COP on the union
of all area-SR-Graphs. However, it systematically implies
a large volume of information to share between areas.

Another method is for the ABRs to exchange their
2COP paths (i.e., the non dominated paths to all desti-
nations of their areas). We claim that only sharing the
Pareto fronts will waste much less computing and mes-
sage resource in practice since we limit their sizes to Γ at
worst. This exchange still provides enough information for
all routers to compute all 2COP paths for every destina-
tion within the network.

More formally, each ABR 𝐴𝑥 computes b2cop(A𝑥 , 𝐴𝑥)
and exchange the results with 𝐴𝑦 ,∀𝑦 ≠ 𝑥. Areas being
limited to a few hundreds routers on average, this com-
putation is very efficient. Note that ABRs also compute
b2cop(A0, 𝐴𝑥), but need not exchange it, as all ABRs
perform this computation. Exchanging the computed 3D
Pareto front has a message complexity of |𝑉 | × 𝑐0 × Γ at
worst in theory. In practice, we expect both the size of
Pareto fronts and the number of relevant destinations to
consider to be fairly low (<< Γ and << |𝑉 | resp.). In the
case of non scalable Pareto fronts, one can opt for sending
only part of them but at the cost of relaxing the guarantees

brought by BEST2COP.
After exchanging messages, any ABR 𝐴𝑥 should know

the non-dominated paths from itself to 𝐴𝑦 ,∀𝑦 ≠ 𝑥, and
the non-dominated paths from 𝐴𝑦 to all nodes within
A𝑦. By combining this information, we can compute the
non-dominated paths from 𝐴𝑥 to all nodes within A𝑦, as
we will now detail.

Cartesian product. Since ABRs act as separators
within the graph, to reach a node within a given area A𝑦,
it is necessary to go through one of the corresponding
ABRs 𝐴𝑦. It thus implies that non-dominated paths to
nodes within A𝑦 from 𝐴𝑥 can be found by combining
bcop(A0, 𝐴𝑥 , 𝐴𝑦) with bcop(A𝑦 , 𝐴𝑦). In other words, by
combining, with a simple cartesian product, the local non-
dominated paths towards the ABRs of a given zone with
the non-dominated paths from said ABRs to nodes within
the corresponding distant areas, one obtains a superset of
the non-dominated paths towards the destinations of the
distant area. In practice, since several ABR can co-exist,
it is necessary to handle the respective non-dominated
paths (bcop(A𝑦 , 𝐴1𝑦) and bcop(A𝑦 , 𝐴2𝑦)) with careful
comparisons to avoid incorrect combinations.

Post-processing. To ensure that the results obtained
through the cartesian product aforementioned are correct,
some post-processing is required. More precisely, this post-
processing allows to remove unnecessary segments for the
segments lists, and to remove non-dominated paths from
the computed cartesian product. First, the segment list as-
sociated with each path should be corrected. When com-
bining paths, the segment lists are simply concatenated,
the first sub-path thus always reaching an ABR. More pre-
cisely, the segment lists necessarily possess the following
structure: (𝑢0, 𝑢1) | . . . | (𝑢𝑖 , 𝐴) | (𝐴, 𝑣0) | . . . | (𝑣 𝑗−1, 𝑣 𝑗), with
𝐴 denoting an ABR. However, 𝐴 being a separator, it is
likely that the best IGP path from 𝑢𝑖 to 𝑣0 natively goes
through 𝐴 without the need of an intermediary segment.
Thus, segments of the form (𝑢𝑖 , 𝐴) | (𝐴, 𝑣0) can often be re-
placed by a single segment (𝑢𝑖 , 𝑣0). Such anomalies should
be corrected, as the MSD constraint may be tight on some
hardware. An additional useless segment may thus render
the path falsely unfeasible, even though it actually fits the
MSD constraint. This correction can be performed easily.
Let 𝐴1 be the separator, if (𝑢𝑖 , 𝐴1) and (𝐴1, 𝑣0) are node
segments, and all best IGP paths from 𝑢𝑖 to 𝑣0 go through
𝐴1 (or possess the same cost and delay as the best IGP
ones going through 𝐴2), the two node segments can be
replaced by a single one.

This correction is performed quickly and relies solely
on information available to the router (the local SR graph
and the received distances summary). Finally, after having
performed and corrected the cartesian products for all the
ABRs of the area, the latter are merged in a single Pareto
front.

Once performed for all areas, an ABR 𝐴𝑥 now possesses
all 2COP paths to all considered destinations within the

14

network. These can then be sent to routers within A𝑥 ,
who will need to perform similar computations to compute
non dominated paths to all routers within a different area.
Note that the 2COP paths for each destination can be
sent as things progress, so that routers can process such
paths progressively (and in parallel) if needed.

Summary. By running BEST2COP within each area, be-
fore exchanging and combining the results, one can find
all non-dominated paths to each destination within a net-
work of 100 000 nodes in less than 900ms. The induced
message complexity is manageable in practice and can be
further tuned if required. Our method can be adapted for
controller-oriented deployments.

3.5. A Limited Complexity with Strong Guarantees
3.5.1. An Efficient Polynomial-Time Algorithm

The flat BEST2COP. In the worst-case, for a given node
𝑣, there are up to degree (𝑣) ×Γ paths that can be extended
towards it. Observe that degree (𝑣) is at least |𝑉 | (because
𝐺 ′ is complete) and depends on how many parallel links 𝑣

has with its neighbors. With 𝐿 being the average number
of links between two nodes in 𝐺 ′, on average we thus have
degree (𝑣) = |𝑉 | × 𝐿 paths to extend to a given node, at
worst. These extensions are performed for each node 𝑣

and up to MSD times, leading to a complexity of

𝑂 (𝑐0 · Γ · |𝑉 |2 · 𝐿)

. Using up to |𝑉 | threads, one can greatly decrease the
associated computation time.

The Cartesian Product. Its complexity is simply
the size of the 2COP solution space squared, for each
destination, thus at worst 𝑂 ((𝑐0 · Γ)2 · |𝑉 |). Note that we
can reach a complexity of 𝑂 (𝑐20 ·Γ2), again with the use of
|𝑉 | threads since each product is independent. This worst
case is not expected in practice as metrics are usually
moslty aligned to result in Pareto fronts whose maximal
size is much smaller than 𝑐0 · Γ.

Overall, BEST2COPE (multi-area) exhibits a com-
plexity of

𝑂
(
𝑐0 · Γ ·

(
𝑐0 · Γ + 𝐿 · 𝑚𝑎𝑥∀𝑖∈[1..𝑚] (|𝑉𝑖 |)

))
with 𝑉𝑖 denoting the set of nodes in each area 𝑖 (𝑚 being
their number) and the use of enough threads (|𝑉 | ideally).
Note that the cartesian product dominates this worst case
analysis as long as the product 𝑉𝑖 ·𝐿 remains small enough.
However, with realistic weighted networks, we argue that
the contribution of the Cartesian product is negligible in
practice, so BEST2COPE is very scalable for real networking
cases.

To conduct our evaluations, we consider that:

• 𝑐0 = MSD = 10, as it is close to the best hardware
limit;

• Γ = 1000, although this value is tunable to reflect the
expected product trueness-constraint on 𝑀1, we con-
sider here a fixed delay grain of 0.1ms (so an accuracy
level of 𝛾 = 10) regarding a maximal constraint 𝑐1 =

100ms.

This latter Γ limitation is realistic in practice and guar-
antees the efficiency of BEST2COP even for large complex
networks as it becomes negligible considering large |𝑉 |.

3.5.2. What are the Guarantees one can Expect when the
Trueness Exceeds the Accuracy? that is if 𝑡 > 𝛾

If propagation delays are measured with a really high
trueness (e.g., with a delay grain of 1 𝜇s or less), BEST2COP
can either remain exact but slower, or, on the contrary,
rapidly produce approximated results. In practice, if one
prefers to favor performance by choosing a fixed discretiza-
tion of the propagation delay (to keep the computing time
reasonable rather than returning truly exact solutions),
this may result in an array not accurate enough to store
all non dominated delay values, i.e., two solutions might
end up in the same cell of such an array even though they
are truly distinguishable. Nevertheless, we can still bound
the margin errors, relatively or in absolute, regarding con-
straints or the optimization objective of the 2COP variant
one aims to solve.

In theory, note that while no exact solutions remain
tractable if the trueness of measured delays is arbitrarily
high (for worst-case DCLC instances), it is possible to set
these error margins to extremely small values with enough
CPU power. If 𝑡 < 𝛾, each iteration of our algorithm in-
troduces an absolute error of at most 1

𝛾
for the 𝑀1 metric,

i.e., the size of one cell in our array (recall that 𝛾 = Γ
𝑐1

is the accuracy level and is the inverse of the delay grain
of the static array used by BEST2COP). So our algorithm
may miss an optimal constrained solution 𝑝∗

𝑑
(for a desti-

nation 𝑑) only if there exists another solution 𝑝𝑑 such that
𝑑1 (𝑝𝑑) ≥ 𝑑1 (𝑝∗𝑑) but the 𝑀1 distance of both solutions as-
sociated to the same integer (that is stored in the same
cell of the dist array) i.e., only if 𝑑1 (𝑝𝑑) ≤ 𝑑1 (𝑝∗𝑑) +

𝑐0
𝛾

.
In this case, we have 𝑑2 (𝑝𝑑) ≤ 𝑑2 (𝑝∗𝑑) because otherwise,
𝑝∗
𝑑

would have been stored instead of 𝑝𝑑. From this ob-
servation, depending on the minimized metric, BEST2COP
ensures the following guarantees.

If one aims to minimize 𝑀0 or 𝑀2 (e.g., when solving
DCLC), then BEST2COP guarantees a solution 𝑝𝑑 that opti-
mizes the given metric, but this solution might not satisfy
the given delay constraint 𝑐 ≤ 𝑐1. As an example, for
DCLC-SR (optimizing 𝑀2), we have

𝑑0 (𝑝𝑑) ≤ 𝑐0

𝑑1 (𝑝𝑑) < 𝑐 + 𝑐0

𝛾

𝑑2 (𝑝𝑑) ≤ 𝑑2 (𝑝∗𝑑)

15

With 𝑝∗
𝑑

denoting the optimal constrained solution. When
minimizing 𝑀1, the solution returned by BEST2COP for a
given destination 𝑑, 𝑝𝑑, will indeed verify the constraints
on 𝑀0 and 𝑀2, and we have 𝑑1 (𝑝𝑑) < 𝑑1 (𝑝∗𝑑) +

𝑐0
𝛾

. The in-
duced absolute error of 𝑐0/𝛾 regarding the delay of paths
becomes negligible as the delay constraint increases. If
𝑐 ≈ 𝑐1, the latter translates to a small relative error of
𝑐0/Γ. Conversely, it becomes significant if 𝑐 << 𝑐1. When
minimizing 𝑀0 or 𝑀2, it is thus recommended to set 𝑐1
as low as possible regarding the relevant sub-constraint(s)
𝑐 ≤ 𝑐1 if necessary. Similarly, to guarantee a limited rel-
ative error when minimizing 𝑀1, it is worth running our
algorithm with a small 𝑐1 as we can have 𝑑1 (𝑝∗𝑑) << 𝑐1.
However, note that this later and specific objective (in
practice less interesting than DCLC in particular) requires
some a priori knowledge, either considering the best delay
path without any 𝑐2 and 𝑐0 constraints, or running twice
BEST2COP to get 𝑑1 (𝑝𝑑) as a first approximation to avoid
set up 𝑐1 blindly initially (here 𝑐1 is not a real constraint,
only 𝑐2 and 𝑐0 apply as bounds of the problem, 𝑐1 just
represents the absolute size of our array and, as such, the
accuracy one can achieve).

Even though BEST2COP exhibits strong and tunable
guarantees, it may not return exact solutions once two
paths end up in the same delay cell, which may happen
even with simple instances exhibiting a limited Pareto
front. Fortunately, a slight tweak in the implementation
is sufficient to ensure exact solutions for such instances.
Keeping the original accuracy of M1 distances, one can
rely on truncated delays only to find the cell of each dis-
tance. Then, one possible option consists of storing up to
𝑘 distinct distances in each cell12. Thus, some cells would
form a miniature, undiscretized Pareto front of size 𝑘 when
required. This trivial modification allows the complexity
to remain bounded and predictable: as long as there exists
less than 𝑘 distances within a cell, the returned solution
is exact. Otherwise, the algorithm still enforces the afore-
mentioned guarantees. While this modification increases
the number of paths we have to extend to 𝑘 · Γ at worst,
such cases are very unlikely to occur in average. Notably,
our experiments show that 3D Pareto fronts for each desti-
nation contain usually less than ≈ 10 elements at most on
realistic topologies, meaning that a small 𝑘 would be suf-
ficient in practice. In summary, BEST2COP is efficient and
exact to deal with simple instances and/or when 𝑡 ≥ 𝛾,
while it provides approximated but bounded solutions for
difficult instances if 𝑡 < 𝛾 to remain efficient and so scal-
able even with massive scale IP networks.

12In practice, note that several implementation variants are possi-
ble whose one consists of using the array only when the stored Pareto
front exceeds a certain threshold. Moreover, 𝑘 can be set up at a
global scale shared for all cells or even all destinations, instead of a
static value per cell, to support heterogeneous cases more dynami-
cally. These approaches were also evoked in [65]

4. Performance Evaluation

In this section, we evaluate the computation time of
our solution. We start by evaluating BEST2COP on vari-
ous flat network instances, ranging from worst-case sce-
nario to real topologies, and compare it to another ex-
isting approach based on the Dijkstra algorithm, SAM-
CRA [67]. Then, after having introduced our multi-area
topology generator, we evaluate the extended variant of
our solution, BEST2COPE, on massive scale networks. In
the following, we consider our discretization to be exact
(i.e., Γ is high enough to prevent loss of relevant informa-
tion). Note that the delays fed to SAMCRA are thus also
discretized in the same fashion and that we also provide
SAMCRA with the SR graph as input, to make the com-
parison as fair as possible. While it increases the graph
density |𝐸 | = |𝑉 |2, it eliminates the need to deal with
a third dimension when updating the Pareto front and
managing the priority queue. SAMCRA can thus ignore
paths of more than 10 edges. Note that while BEST2COP
returns the whole 2COP solutions, our implementation of
SAMCRA only returns DCLC-SR in this comparison. In
other words, BEST2COP returns a whole 3D Pareto front,
while SAMCRA is implemented to return a constrained
2D Pareto front. All our experiments are performed on an
Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz × 8.

4.1. Computing Time & Comparisons for Flat Networks
This section illustrates the performance of our algo-

rithm using three flat network scenarios. In particular,
we do not take advantage of any area decomposition to
mitigate the computing time. First, we get a strict upper
bound on its execution time for the worst case scenario.
Second, we show that BEST2COP is far from reaching this
upper bound when executed on actual networks, even
with random weight assignments. Finally, we show that
BEST2COP performs even better on real networks where
weight assignments are not completely correlated (which
may lead to a large Pareto front). We will see that
BEST2COP outperforms SAMCRA even without the use of
multi-threading.

Upper bound. Here we force BEST2COP to explore
its full iteration space (i.e., behaving as if |𝑉 |2 × 𝐿 ×Γ dis-
tances have to be extended at each iteration). The results
are shown in Fig. 5 for an increasing number of nodes and
threads. BEST2COP does not exceed 84s when using a single
thread, considering |𝑉 | = 1000 and 𝐿 = 2, the average num-
ber of parallel links in the transformed graph. This time,
reasonable given the unrealistic nature of the experience,
is significantly reduced when relying on multi-threading.
Using 8 threads, BEST2COP execution time decreases to
around 10s, highlighting both the parallelizable nature of
our algorithm and its inherently good performance (past
this number of threads, there is no more speedup as we ex-
ceed the number of physical cores of our machine). Addi-
tional experiments conducted on a high-performance grid

16

200 400 600 800 1000
|V|

0

20

40

60

80

Ti
m

e
(s

)

Threads
1
2
4
6
8
10
12

Figure 5: Upper bound of BEST2COP execution time regarding the
number of nodes and threads.

show that BEST2COP reaches a speedup factor of 23 when
run on 30 cores.

Overall, the extreme execution times presented here
are far from BEST2COP real performance; its data struc-
tures were virtually filled up to push it to its maximum
exploration limits. In practice, when considering concrete
underlying raw networks and their SR transformation,
BEST2COP requires less than half a second even with
random topologies and a limited number of threads as we
will now see.

Random networks. We continue our evaluation with
random scenarios and compare our execution times with
SAMCRA. We first generate raw connected graphs of |𝑉 |
nodes by using the Erdos-Rényi model with a density of
10/|𝑉 |. IGP weights are picked at random between 1 and
108 (i.e., one more bit than the maximum possible IGP
cost in current IGPs) using a bounded Zipf distribution
(having a shape of log(10)/log(9)). Likewise, propagation
delays are picked at random using the same distribution.
Here, we only show the results for a maximum delay value
of 100ms, this value leads to the highest computation time
out of all the tests performed. Finally, we apply the SR
graph conversion on these random graphs.

We perform these tests for |𝑉 | ranging from 100 to 1000
(with steps of 100). To account for the randomness of both
valuation functions, we generate 30 differently weighted
distinct topologies for each value of |𝑉 |. We run BEST2COP
from |𝑉 |×0.1 nodes selected as representative sources (ran-
domly picked uniformly). The number of threads is set to
𝑇 = 1 and 8 as shown in Fig 6. While SAMCRA is run
from the same amount of sources in the same conditions, it
cannot benefit as-is from multi-threaded architectures, as
it cannot be parallelized as easily. Note that SAMCRA is
also run on the SR Graph, to spare it the management of
a 3D Pareto front (i.e., on the fly conversions into segment
lists of the discovered paths to perform continuous Pareto
front updates).

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

|V|

0

250

500

750

1000

1250

1500

1750

2000

3000

4000
5000
6000
7000
8000
9000

Ti
m

e
(m

s)

Best2cop-8thd
Best2cop-1thd
Samcra

Figure 6: Computation time taken by Best2cop (1 and 8 threads)
and SAMCRA to solve 2COP on random topologies with random
weights. The scale of both axis switches from linear to logarithmic
once 𝑥 > 1000 and 𝑦 > 2000 (the grey area). A confidence interval
of 99% is shown, but is very tight and thus hardly noticeable.

The resulting computing times are shown in Fig 6: both
axes follow a linear scale up until |𝑉 | = 1000 and a comput-
ing time of 2s on the y-axis. They switch to a logarithmic
scale afterward for better readability.

Note that such an evaluation is not advantageous and
not yet representative of the times reached on real in-
stances. We do not benefit from the patterns present in
realistic networks such as metric alignment. Such random
valuations exhibit the efficiency of BEST2COP in moderate
challenging conditions. When relying on a single thread,
BEST2COP reaches an execution time of about 250ms when
|𝑉 | = 1000. Once again, this time can be greatly re-
duced when relying on multiple threads. With 8 threads,
BEST2COP remains under 100ms in all of its runs (below
this #node threshold), exhibiting an average performance
of about 50ms when |𝑉 | = 1000. Overall, BEST2COP scales
well enough with the dimension of the network which is
the critical performance parameter (quadratic in |𝑉 |).

SAMCRA showcases a higher execution time, reaching
250ms for |𝑉 | = 400, and 2s when |𝑉 | = 1000. The lat-
ter suffers far more from the density of the SR graph (to
natively manage the third dimension of the Pareto front),
and mostly from the random nature of the weights that im-
pacts the size of the Pareto front. Indeed, while BEST2COP
perform updates of the Pareto front in a relaxed amortized
manner at the end of each iteration, SAMCRA updates it
for each new discovered path resulting in a higher man-
agement cost when the front size becomes significant.

For |𝑉 | > 1000, Fig. 6 solely showcases the execu-
tion time of the most effective approach, i.e., BEST2COP
with 8 threads. Although BEST2COP seemed to scale very
well with the dimensions of the graph, its execution time

17

Best2cop-1thd Best2cop-8thd Samcra
0

25
50
75

100
125
150
175
200
225
250
275
300
325
350

Ti
m

e
(m

s)

Figure 7: Computation time taken by Best2cop (1 and 8 threads)
and SAMCRA to solve 2COP on a real topology with real weights
(|𝑉 | ≈ 1000).

increases drastically once |𝑉 | > 5000, reaching 10s for
|𝑉 | = 10 000. Thus, even BEST2COP (in its flat variant
not relying on area decomposition), cannot scale with SR
graphs of 10 000 nodes to enable real-time routing.

In summary, although the flat variant of BEST2COP
also shows its limits in massive-scale networks, BEST2COP
performs well for large scale networks (i.e., a single large
area) and showcases better performance than SAMCRA
(here with not favorable random weighted SR graphs of up
to 1000 nodes). SR graphs translated from real topologies
are likely to produce simpler instances of the problem, in
particular with favorable valuations mitigating the Pareto
front size. Thus, we now analyze the performance of
BEST2COP and SAMCRA on a more realistic case.

Real network. Let us now consider a real IP network
topology neither having random structure nor valuations.
We use our largest available ISP topology, consisting of
more than 1100 nodes and 4000 edges. While the IGP
costs of each link in 𝐸 were available, we do not have their
respective (real) measured delays. We thus infer delays
thanks to the available geographical locations we do pos-
sess: we set the propagation delays as the orthodromic dis-
tances between the connected nodes divided by the speed
of light. The execution times are then shown in Fig. 7
where BEST2COP and SAMCRA are run for every node as
potential source (resulting in distributions represented as
boxplots).

One can see that the two algorithms indeed benefit
from interesting properties in deployed networks. In par-
ticular, the execution time of BEST2COP rarely exceeds
25ms (resp. 100ms) when relying on 8 (resp. 1) thread.
Performance are greatly enhanced compared to previous
cases thanks to the real underlying network structure and
weights alignement: few distances dominate all the oth-
ers leading to small Pareto front. A similar trend can be
observed for SAMCRA, whose average execution time de-

creases drastically compared to the previous evaluation, to
reach ≈ 130ms, although some outliers took 350ms. These
results are not surprising, as SAMCRA, as well as other
Dijkstra-like related approaches, rely on the fact that sim-
ple practical cases result in small Pareto fronts, as metrics
are often somewhat aligned.

Nevertheless, BEST2COP still shows better performance
(be it with a single or multiple threads), in particular be-
cause of the density of the SR graph input that impacts
both approaches. Indeed, SAMCRA, being implemented
with a binary heap as priority queue, is more likely to
suffer from large |𝐸 | than BEST2COP.

In realistic cases, BEST2COP can thus work with Γ >

1000 and so with a supported accuracy 𝑡 >> 0.1ms (to
deal with a micro-second grain) for small enough delay
constraint (i.e., , << 100ms), while keeping the execution
time in the hundreds of milliseconds. One may notice that
(almost) perfectly aligned metrics reduce the usefulness of
any DCLC-like algorithm, but such metrics are not always
aligned for all couples in practice (even with realistic cases,
we observe that the average size of the 3D Pareto front is
strictly greater than 1, typically 10). Our algorithm deals
efficiently with easy cases and remains exact13 and efficient
for more complex cases, e.g., with random graphs.

The networks used so far were flat networks, with sizes
typically not exceeding a thousand nodes. However, some
recent IP network deployments exceed 10 000 nodes even
in medium-sized countries. We thus now aim to evaluate
the execution time of BEST2COPE, the extended variant of
BEST2COP which supports and leverages OSPF-like area
division. This version is adapted to tackle TE problems in
massive scale, hierarchical networks. In the following, we
only consider our approach, as it already exhibited bet-
ter performance than SAMCRA even for small simple in-
stances. However, before continuing analyzing the com-
puting time results, we first introduce our generator for
massive-scale, multi-areas, realistic networks having two
valuations.

4.2. Massive Scale Topology Generation

To the best of our knowledge, there are no massive
scale topologies made publicly available which exhibit
IGP costs, delays, and area subdivision. For example, the
graphs available in the topology zoo (or sndlib) datasets
do not exceed 700 nodes in general. Moreover, the ones
for which the two metrics can be extracted, or at least
inferred, are limited to less than 100 nodes. Thus, at first
glance, performing a practical massive-scale performance
evaluation of BEST2COPE is highly challenging if not
impossible. There exist a few topology generators [60, 54]
able to generate networks of arbitrary size with realistic
networking patterns, but specific requirements must be
met to generate topologies onto which BEST2COPE can be

13Or at least near exact for difficult instances having both high
trueness and exponential increasing Pareto fronts.

18

evaluated, in particular the need for two metrics and the
area decomposition.

Topology generation requirements. First, the
experimental topologies must be large, typically between
10 000 and 100 000 nodes. Second, they must possess
two valuation functions as realistic as possible, one for
the IGP cost and the other modeling the delay. Third,
since the specific patterns exhibited by real networks
impact the complexity of TE-related problems, the
generated topologies must possess realistic structures
(e.g., with respect to redundancy in the face of failures
in particular). Finally, for our purposes, the topology
must be composed of different areas centered around a
core backbone, typically with two ABRs between each to
avoid single point of failure.Since we do not know any
generator addressing such requirements, we developed
YARGG (Yet Another Realistic Graph Generator),
a python tool(Code available online 14) which allows
one to evaluate its algorithm on massive-scale realistic
IP networks. In the following, we describe the gener-
ation methods used to enforce the required characteristics.

High-level structure. One of the popular ISP
structure is the three-layers architecture [1], illustrated in
Fig. 9. The access layer provides end-users access to the
communication service. Traffic is then aggregated in the
aggregation layer. Aggregation routers are connected to
the core routers forming the last layer. The aggregation
and access layers form an area, and usually cover a
specific geographical location. The core routers, the
ABRs connecting the backbone other areas, and their
links, form the backbone area that interconnect the
stub areas, i.e., the aggregation and access layers of
the different geographical locations. Core routers are
ABRs and belong both to a sub area, per couple of 2 for
redundancy. Thus, while the access and aggregation layers
usually follow standard structures and weight systems
recommended by different network vendors, the backbone
can vastly differ among different operators, depending
on geographical constraints, population distribution,
and pre-existing infrastructure. Taking this factors into
account, YARGG generates large networks by following
this 3-layer model, given a specific geographical location
(e.g., a given country).

Generating the core network and the areas.
YARGG generates the core network by taking the afore-
mentioned considerations into account: existing infras-
tructures, population, and geographical constraints. An
example of a core network as generated by YARGG may
be seen in Fig. 8. At a very high level, given a geographical
location (e.g., a country or a continent), YARGG builds
the structure of the core network by

14https://github.com/JroLuttringer/YARGG

Figure 8: Core network (before step 5) generated by YARGG in
France. While we consider the road distances, we represent the links
in an abstract fashion for readability purposes. The color and width
of the links represent their bandwidth (and thus their IGP costs).

1. Extracting the 𝑥 most populated cities in the area
(close cities are merged in a single entity);

2. Constructing a minimum Spanning-Tree covering all
cities of the area, considering road distances and pop-
ulation. Links between highly populated cities are
prioritized.

3. Removing articulation-points, creating so a bi-
connected graph;

4. Adding links increasing the connectivity and resilience
for a limited cost;

5. Doubling the obtained topology (making the graph
tri-connected) by adding systematic links between the
two ABR routers of the same city as well as the same
links in their own same topology (dual data plane);

6. Associating each couple of ABR to the two last layers
of the topology, forming an area per city.

The couple of routers located at each city within this
generated backbone area become the ABRs between the
backbone and their area, which is generated next.

Access & aggregation layers. These last two
layers make up a non-backbone area and span a reduced
geographical area. Thus, one access and one aggregation
layer are located in each city considered by YARGG. Sev-
eral network equipment vendors recommend a hierarchical
topology, such as the three-layer hierarchical model [4].
An illustration can be seen in Fig. 9. Simply put, there
should be two core routers (the ABRs) at the given
location (a city in YARGG’s case). Each core router is
connected to all aggregation routers. For better resiliency,
the aggregation layer is divided into aggregation groups,
composed of two connected routers. Finally, routers

19

https://github.com/JroLuttringer/YARGG

2020
10

Access
Layer

Aggregation
Layer

Core

Agg. Gr.

{1, 2, 5}

100

2020

100

{1, 2, 5}

Figure 9: Weights and structures of an area generated by YARGG.

within an aggregation group are connected to access-layer
routers. To achieve areas of ≈ 300 nodes, we consider 30
access routers per aggregation group. This results in a
large, dense and realistic graph.

Weights. In the backbone, the weights generated
by YARGG are straightforward. The delays are extracted
from the road distances between the cities, divided by 60%
the speed of light (close to the best performing fiber optic).
The IGP cost is 1 for links between large cities since these
links usually have a high bandwidth (in black in Fig. 8), 2
for standard links, necessary to construct a tri-connected
graph (added at step 3, in red in Fig. 8), and 5 for links
that are not mandatory, but that increase the overall con-
nectivity (added at step 4, in orange in Fig. 8).

Within an area, the IGP costs follow a set of realistic
constraints, according to two main principles: (i) access
routers should not be used to route traffic (except for the
networks they serve), (ii) links between routers of the
same hierarchical level (e.g., between the two core routers
or the two aggregation routers of a given aggregation
group) should not be used, unless necessary (e.g., multiple
links or node failures). These simple principles lead to
the IGP costs exhibited in Fig. 9. The delays are then
chosen uniformly at random. Since access routers and
aggregation routers are close geographically, the delay of
their links is chosen between 0.1 and 0.3ms. The delay
between aggregation routers and core routers is chosen
between 0.3ms and the lowest backbone link delay. Thus,
links within an area necessarily possess a lesser delay than
core links.

Summary. YARGG computes a large, realistic and
multi-area topology. The backbone spans a given geo-
graphical location and possesses simple IGP weights and
realistic delays. Other areas follow a standard three-layer
hierarchical model. Weights within a stub area are cho-
sen according to a realistic set of usual ISP constraints.
Delays, while chosen at random within such area, remain
consistent with what should be observed in practice.

4.3. Computing Time for Massive Scale Multi-Areas Net-
works

Using YARGG, we generate five massive scale,
continent-wide topologies, and run BEST2COP on each one
of them. The topologies ranges from 10 000 to 100 000
nodes. Each non-backbone area possess around 320 nodes.
The topologies, their geographical representations and
some of the associated network characteristics can be
found online [49].

We run BEST2COP on each ABR as a source (around
|𝑉 |/320 × 2 sources). The time corresponding to the mes-
sage exchange of the computed Pareto front (step 2 of
BEST2COPE) is not taken into consideration. Thus, the ex-
periment is comprised of the following steps:

1. All ABRs run BEST2COP for their areas and convert
the found distances into segment lists;

2. The current source ABR performs the Cartesian prod-
uct of distances as described in Sec. 3.4, to find all
non-dominated distances to all |𝑉 | destinations.

The computation time showcased is thus the sum of the
average time taken by ABRs to perform the preliminary
intra-area BEST2COP (and the distances to segment lists
conversions) plus the time taken to perform the |𝑉 |/320 ×
2 − 2 Cartesian products (for all other ABRs of all other
areas).

Note that we consider an ABR as a source and not an
intra-area destination. In practice, the ABR would send
the computed distances to the intra-area nodes, who in
turn would have to perform a Cartesian product of these
distances with its own distances to said ABR. However,
both the ABR and the intra area node have to consider
the same number of destinations (|𝑉 |), and the results com-
puted by the ABR can be sent as they are generated (des-
tination per destination), allowing both the ABR and the
intra-area nodes to perform their Cartesian product at the
same time. In addition, intra-area nodes may benefit from
several optimizations regarding their Cartesian product, if
the constraints of the desired paths are known (these op-
timizations will not be used nor detailed in this paper).
For these reasons, we argue that the time measured here,
using an ABR as a source, is representative of the total
actual time required, i.e., the overall worst time for the
last treated destination at each source.

The results of this experiment are shown in the vio-
lin plot of Fig. 10. By leveraging the network struc-
ture, BEST2COPE exhibits very good performance despite
the scale of the graph. For 10 000 nodes, BEST2COPE ex-
hibits a time similar to the one taken by its flat variant for
|𝑉 | = 2000. Furthermore, BEST2COPE seems to scale lin-
early with the number of nodes, remaining always under
one second for |𝑉 | ≈ 75 000. Even once the network reaches
a size of ≈ 100 000, BEST2COPE is able to solve 2COP in
less than one second for a non-negligible fraction of the
sources, and never exceeds 1.5s.

20

Oceania (|V| ~ 10k) Africa (|V| ~ 21k) America (|V| ~ 45k) Europe (|V| ~ 76k) Asia (|V| ~ 105k)

200

400

600

800

1000

1200

1400

Ti
m

e
(m

s)

Figure 10: Best2copE computation time on 5 continent-wide topologies generated by YARGG.

Note that the times showcased here rely on a single
thread. While BEST2COPE’s Cartesian product can be
parallelized locally (both at the area and the destination
scale), this parallelization hardly has any effect. This is
explained by the fact that these individual computations
are in fact fairly efficient, hence the overhead induced by
the creation and management of threads is heavier than
their workload. In addition, since BEST2COP deals with
very large topologies, some complex memory-related ef-
fects might be at play. Indeed, we notice these results to
surprisingly vary depending on the underlying system, op-
erating system and architecture, due to the differences in
terms of memory management.

Thus, while massive scale deployments seem to a priori
prevent the usage of fine-grained TE, their structures can
be leveraged, making complex TE problems solvable in less
than one second even for networks reaching 100 000 nodes.
The computations performed for each area can also be
distributed among different containers within the cloud, if
handled by a controller.

4.4. Discussions and Ongoing Works

The absolute times exhibited here may surprise some
readers. Well-known algorithms, such as MC Dijkstra
(similar to SAMCRA, except for a different cost function),
have been shown to solve DCLC exactly, in about 300ms
in road networks of 250 000 nodes [33]. In our evaluation,
SAMCRA reaches this execution time for one thousand
nodes only.

However, such experiments only consider two dimen-
sions (cost and delay), and do not consider Segment Rout-
ing (neither as a third dimension or with an SR graph).
Consequently, these best time DCLC results are usually
performed on very sparse networks (usually real or ran-
dom ones, with a density that may be as low as 0.0001)
with aligned metrics. In our study, algorithms are run on
very dense SR graphs (density of 1 for each flat network
or area), to natively consider the number of segments and
fully solve 2COP (or at least DCLC-SR for SAMCRA in
our comparisons).

As one may recall, considering the fully meshed SR
graph has two main advantages. First, it allows to eas-
ily consider the number of segments and the associated
MSD constraint. Maintaining a 2D Pareto front is then
sufficient, as the third dimension can be handled natively.
Second, it prevents the need of converting all discovered
paths to segment lists on the fly. Indeed, the number
of segments characterizes a path, not an edge. In other
words, this metric cannot be added to the weight vector of
an edge. Rather, all discovered paths must be converted
to segment lists to maintain a correct 3D Pareto front, re-
specting the MSD constraint. Although the information
required to perform this conversion in polynomial time is
available, it would require many additional computations.

For these reasons, we considered here that running al-
gorithms on the SR graph itself is beneficial. Indeed,
BEST2COP has the ability to handle path updates without
the use of any PQ, such that it is less sensitive to this graph
parameter than Dijkstra related approaches that may suf-
fer from dense graphs, such as SR ones, if relying on a
naive PQ implementation. While most algorithms main-
tain the Pareto front up to date as soon as a path is visited,
BEST2COP only perform this operation once per iteration.
Thus, the maintenance cost is lower and less dependent
on the number of edges. For Dijkstra based approaches
such as SAMCRA, the use of a relaxed PQ (like the Fi-
bonnacci heap) may look useful to decrease this sensitivity.
However, in our evaluations, we consider a binary heap to
implement the PQ of SAMCRA as it is the one provid-
ing the best performance in the scope of our experiments.
Indeed, just marking a path as deprecated in the binary
heap is enough to relax the updates (i.e., there is no need
to re-organize the heap at a logarithmic cost).

Moreover, it is thus worth investigating if using the SR
graph is actually detrimental to other algorithms, includ-
ing SAMCRA. For some, relying on the raw graph, as well
as on the fly conversions and the maintenance of a 3D
Pareto front might be more efficient. This model might
also be more advantageous to BEST2COP itself in some
cases. This study is left for future works. Such investi-

21

gations may also call forth the following question: is con-
sidering the number of segments of each path necessary?
One may, for example, running Dijkstra based algorithms
on the raw graph (relying on a PQ), and convert only
the desired paths to segment lists afterward. Paths may
turn out to exceed the MSD constraint, but could still
be deployed relying on binding segments. This solution is
however fairly risky. Binding segments should indeed be
avoided, as they results in routing overhead and additional
states to maintain in each routing node. Depending on the
MSD constraint of the underlying hardware, and the na-
ture of the network, this solution might lead to the use of
too many binding segments.

Overall, BEST2COP is the only algorithm to provide safe
guarantees regarding both its results and execution times
when considering 2COP in all possible cases. By natively
considering the number of segments, BEST2COP ensures
that the paths found are feasible without relying on the
management of a 3D Pareto front, on the fly conversions,
or binding segments, which could be very costly in worst
cases. This is possible due to the fact that BEST2COP deals
more efficiently with dense networks than other state-of-
the-art algorithms, as shown in this section, it does not rely
on any PQ and perform efficient amortized Pareto front
updates. Finally, BEST2COP solves relevant TE-problems
exactly in simple scenarios, or returns approximated so-
lutions exhibiting strong, predictable and straightforward
guarantees. Because of its ability to provide safeguards
in all possible cases (regarding both its computation times
and results), as well as its ability to deal with massive scale
multi-area networks, BEST2COP is an ideal candidate to be
deployed for such TE flavors in IP networks.

5. Conclusion

While the overhead of MPLS-based solutions lead to a
TE winter in the past decade, Segment Routing marked
its rebirth. In particular, SR enables the deployment of
a practical solution to the well-known DCLC problem. In
this paper, we proposed a multi-metric SR construct onto
which our algorithm, BEST2COP, iterates to natively and ef-
ficiently solve DCLC in SR domains. BEST2COP leverages
both SR properties and the inherently limited accuracy
of measured delays to efficiently handle all scenarios; ei-
ther with exactitude for simple instances (i.e., with Pareto
fronts limited in size and/or weak delay trueness) or, at
worst for difficult instances, with strong guarantees, e.g., a
bounded distance regarding the delay constraint. Indeed,
BEST2COP not only handle SR as a third constraint almost
for free, but also relies on the most simple and efficient
data structures and concepts available in the DCLC liter-
ature.

In this paper, we went several steps further with the
following achievements:

• we started by experimentally demonstrating that SR
is a relevant technology to deploy DCLC paths, the

vast majority of solutions are not exceeding its MSD
limit (i.e., the required number of segments is limited
to 10 in practice);

• the versatile design of BEST2COP allows ISP to solve
the most practical category of optimization variants
and heterogeneous constraints for each destination
within SR domains, i.e., it solves 2COP taking into
account the propagation delay, the IGP cost and the
number of necessary segments;

• for massive scale ISPs relying on area-subdivision,
we extend BEST2COP, partitioning 2COP into smaller
sub-problems, to further reduce its overall complexity
(time, memory and churn);

• through extensive evaluations and comparisons, in
particular relying on multi-threading and our own
multi-metric/multi-areas network generator, we have
shown that BEST2COP is very efficient in practice.

To the best of our knowledge, BEST2COP is the first prac-
tically exact and efficient solution for 2COP within SR
domains, making it the most practical candidate to be de-
ployed for such a TE flavor in today ISPs. It is able to solve
2COP on massive scale realistic networks having 100 000
nodes in less than a second. For large areas having thou-
sands of routing devices, we have shown that BEST2COP can
easily deal with random topologies while its concurrents do
not scale. Finally, more advanced and flexible structures
can be envisioned to deal with really high trueness require-
ments, while deploying novel flex-algo strategies can help
to mitigate the rare SR limit drawbacks.

Acknowledgment

This work was partially supported by the French Na-
tional Research Agency (ANR) project Nano-Net under
contract ANR-18-CE25-0003.

References

[1] , . Campus network for high availability design guide -
cisco. https://www.cisco.com/c/en/us/td/docs/solutions/
Enterprise/Campus/HA_campus_DG/hacampusdg.html. (Ac-
cessed on 07/12/2021).

[2] , . Cisco content hub - performance measurement for traf-
fic engineering. https://content.cisco.com/chapter.sjs?
uri=/searchable/chapter/content/en/us/td/docs/ios-xml/
ios/seg_routing/configuration/xe-17/segrt-xe-17-book/
performance_measure_TE.html.xml. (Accessed on 06/21/2021).

[3] , . GÉant topology map. https://www.geant.org/Networks/
Pan-European_network/Pages/GEANT_topology_map.aspx. (Ac-
cessed on 06/21/2021).

[4] , . Hierarchical network design overview (1.1) > cisco net-
working academy connecting networks companion guide: Hier-
archical network design | cisco press. https://www.ciscopress.
com/articles/article.asp?p=2202410&seqNum=4. (Accessed
on 09/08/2021).

[5] Adams, H., . Segment routing in the 5g era. https:
//www.juniper.net/assets/de/de/local/pdf/articles/
3200083-en.pdf. (Accessed on 06/21/2021).

22

https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Campus/HA_campus_DG/hacampusdg.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Campus/HA_campus_DG/hacampusdg.html
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/content/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-17/segrt-xe-17-book/performance_measure_TE.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/content/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-17/segrt-xe-17-book/performance_measure_TE.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/content/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-17/segrt-xe-17-book/performance_measure_TE.html.xml
https://content.cisco.com/chapter.sjs?uri=/searchable/chapter/content/en/us/td/docs/ios-xml/ios/seg_routing/configuration/xe-17/segrt-xe-17-book/performance_measure_TE.html.xml
https://www.geant.org/Networks/Pan-European_network/Pages/GEANT_topology_map.aspx
https://www.geant.org/Networks/Pan-European_network/Pages/GEANT_topology_map.aspx
https://www.ciscopress.com/articles/article.asp?p=2202410&seqNum=4
https://www.ciscopress.com/articles/article.asp?p=2202410&seqNum=4
https://www.juniper.net/assets/de/de/local/pdf/articles/3200083-en.pdf
https://www.juniper.net/assets/de/de/local/pdf/articles/3200083-en.pdf
https://www.juniper.net/assets/de/de/local/pdf/articles/3200083-en.pdf

[6] Almes, G., Kalidindi, S., Zekauskas, M., 1999. A Round-trip
Delay Metric for IPPM. RFC 2681. RFC Editor.

[7] Almes, G., Kalidindi, S., Zekauskas, M., Morton, A., 2016. A
One-Way Delay Metric for IP Performance Metrics (IPPM).
STD 81. RFC Editor.

[8] Aneja, Y.P., Nair, K.P.K., 1978. The constrained shortest
path problem. Naval Research Logistics Quarterly 25, 549–555.
doi:10.1002/nav.3800250314.

[9] Aubry, F., . Models and algorithms for network optimization
with segment routing , 175.

[10] Aubry, F., Lebrun, D., Vissicchio, S., Khong, M.T., Deville,
Y., Bonaventure, O., 2016. Scmon: Leveraging segment routing
to improve network monitoring, in: IEEE INFOCOM 2016 -
The 35th Annual IEEE International Conference on Computer
Communications, pp. 1–9. doi:10.1109/INFOCOM.2016.7524410.

[11] Bhatia, R., Hao, F., Kodialam, M., Lakshman, T.V., 2015. Op-
timized network traffic engineering using segment routing, in:
2015 IEEE Conference on Computer Communications (INFO-
COM), pp. 657–665.

[12] Brumbaugh-Smith, J., Shier, D., 1989. An empirical investiga-
tion of some bicriterion shortest path algorithms. European
Journal of Operational Research 43, 216–224. doi:10.1016/
0377-2217(89)90215-4.

[13] Brundiers, A., Schüller, T., Aschenbruck, N., 2021. On the
benefits of loops for segment routing traffic engineering, in: 2021
IEEE 46th Conference on Local Computer Networks (LCN), pp.
32–40. doi:10.1109/LCN52139.2021.9524958.

[14] Carpa, R., Glück, O., Lefevre, L., 2014. Segment routing based
traffic engineering for energy efficient backbone networks, in:
2014 IEEE International Conference on Advanced Networks and
Telecommuncations Systems (ANTS), pp. 1–6. doi:10.1109/
ANTS.2014.7057272.

[15] De Neve, H., Van Mieghem, P., 2000. Tamcra: A tunable accu-
racy multiple constraints routing algorithm. Comput. Commun.
23, 667–679. URL: https://doi.org/10.1016/S0140-3664(99)
00225-X, doi:10.1016/S0140-3664(99)00225-X.

[16] Ergun, F., Sinha, R., Zhang, L., 2002. An improved fptas for
restricted shortest path. Information Processing Letters 83,
287–291. doi:10.1016/S0020-0190(02)00205-3.

[17] Feng, G., Makki, K., Pissinou, N., Douligeris, C., 2002. Heuris-
tic and exact algorithms for qos routing with multiple con-
straints. IEICE Transactions on Communications 85, 2838–
2850.

[18] Filsfils, C., . Segment routing - cisco live barcelona
2019. https://www.segment-routing.net/conferences/
2019-01-30-CLEUR-3122/. (Accessed on 08/30/2021).

[19] Filsfils, C., 2020. Network programming with srv6.
https://orbi.uliege.be/bitstream/2268/245292/4/
network-programming-phd-final.pdf. (Accessed on
06/28/2021).

[20] Filsfils, C., Michielsen, K., Talaulikar, K., 2017. Segment Rout-
ing Part I. Number ptie. 1 in Segment Routing, CreateSpace In-
dependent Publishing Platform. URL: https://books.google.
fr/books?id=1zMyMQAACAAJ.

[21] Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B., Litkowski,
S., Shakir, R., 2018. Segment Routing Architecture. RFC 8402.
RFC Editor.

[22] Foerster, K., Parham, M., Chiesa, M., Schmid, S., 2018. Ti-mfa:
Keep calm and reroute segments fast, in: IEEE INFOCOM 2018
- IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 415–420.

[23] Garey, M.R., Johnson, D.S., 1990. Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., USA. doi:10.5555/574848.

[24] Garroppo, R.G., Giordano, S., Tavanti, L., 2010. A survey
on multi-constrained optimal path computation: Exact and
approximate algorithms. Computer Networks 54, 3081–3107.
doi:10.1016/j.comnet.2010.05.017.

[25] Gay, S., Hartert, R., Vissicchio, S., 2017. Expect the unex-
pected: Sub-second optimization for segment routing. IEEE
INFOCOM 2017 - IEEE Conference on Computer Communica-

tions , 1–9.
[26] Giacalone, S., Ward, D., Drake, J., Atlas, A., Previdi, S., 2015.

OSPF Traffic Engineering (TE) Metric Extensions. RFC 7471.
RFC Editor.

[27] Ginsberg, L., Previdi, S., Giacalone, S., Ward, D., Drake, J.,
Wu, Q., 2019. IS-IS Traffic Engineering (TE) Metric Extensions.
RFC 8570. RFC Editor.

[28] Giorgetti, A., Castoldi, P., Cugini, F., Nijhof, J., Lazzeri, F.,
Bruno, G., 2015. Path encoding in segment routing, in: 2015
IEEE Global Communications Conference (GLOBECOM), pp.
1–6.

[29] Goel, A., Ramakrishnan, K., Kataria, D., Logothetis, D., 2001.
Efficient computation of delay-sensitive routes from one source
to all destinations, in: Proceedings IEEE INFOCOM 2001. Con-
ference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society
(Cat. No.01CH37213), pp. 854–858 vol.2. doi:10.1109/INFCOM.
2001.916276.

[30] Guck, J.W., Van Bemten, A., Reisslein, M., Kellerer, W., 2018.
Unicast qos routing algorithms for sdn: A comprehensive survey
and performance evaluation. IEEE Communications Surveys &
Tutorials 20, 388–415. doi:10.1109/COMST.2017.2749760.

[31] Guedrez, R., Dugeon, O., Lahoud, S., Texier, G., 2016. Label
encoding algorithm for mpls segment routing, in: 2016 IEEE
15th International Symposium on Network Computing and Ap-
plications (NCA), IEEE. pp. 113–117.

[32] Guo, L., Matta, I., 1999. Search space reduction in qos routing,
in: Proceedings. 19th IEEE International Conference on Dis-
tributed Computing Systems (Cat. No.99CB37003), p. 142–149.
doi:10.1109/ICDCS.1999.776515.

[33] Hanusse, N., Ilcinkas, D., Lentz, A., 2020. Framing al-
gorithms for approximate multicriteria shortest paths, in:
20th Symposium on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS 2020),
pp. 11:1–11:19. URL: https://hal.archives-ouvertes.fr/
hal-03034585, doi:10.4230/OASIcs.ATMOS.2020.11.

[34] Hao, F., Kodialam, M., Lakshman, T.V., 2016. Optimizing
restoration with segment routing, in: IEEE INFOCOM 2016 -
The 35th Annual IEEE International Conference on Computer
Communications, pp. 1–9.

[35] Hartert, R., Schaus, P., Vissicchio, S., Bonaventure, O., 2015.
Solving segment routing problems with hybrid constraint pro-
gramming techniques, in: Pesant, G. (Ed.), Principles and Prac-
tice of Constraint Programming, Springer International Pub-
lishing, Cham. pp. 592–608.

[36] Hassin, R., 1992. Approximation schemes for the restricted
shortest path problem. Mathematics of Operations Research
17, 36–42.

[37] Hou, X., Wu, M., Zhao, M., 2018. An optimization routing al-
gorithm based on segment routing in software-defined networks.
Sensors 19, 49. doi:10.3390/s19010049.

[38] Jaffe, J.M., 1984. Algorithms for finding paths with mul-
tiple constraints. Networks 14, 95–116. doi:10.1002/net.
3230140109.

[39] Jia, Z., Varaiya, P., 2006. Heuristic methods for delay con-
strained least cost routing using k-shortest-paths. IEEE Trans-
actions on Automatic Control 51, 707–712. doi:10.1109/TAC.
2006.872827.

[40] Juttner, A., Szviatovski, B., Mecs, I., Rajko, Z., 2001. Lagrange
relaxation based method for the qos routing problem, in: Pro-
ceedings IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.01CH37213),
pp. 859–868 vol.2.

[41] Korkmaz, T., Krunz, M., 2001. Multi-constrained optimal path
selection, in: Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications Society
(Cat. No.01CH37213), p. 834–843 vol.2. doi:10.1109/INFCOM.
2001.916274.

[42] Kuipers, F., Van Mieghem, P., Korkmaz, T., Krunz, M.,

23

http://dx.doi.org/10.1002/nav.3800250314
http://dx.doi.org/10.1109/INFOCOM.2016.7524410
http://dx.doi.org/10.1016/0377-2217(89)90215-4
http://dx.doi.org/10.1016/0377-2217(89)90215-4
http://dx.doi.org/10.1109/LCN52139.2021.9524958
http://dx.doi.org/10.1109/ANTS.2014.7057272
http://dx.doi.org/10.1109/ANTS.2014.7057272
https://doi.org/10.1016/S0140-3664(99)00225-X
https://doi.org/10.1016/S0140-3664(99)00225-X
http://dx.doi.org/10.1016/S0140-3664(99)00225-X
http://dx.doi.org/10.1016/S0020-0190(02)00205-3
https://www.segment-routing.net/conferences/2019-01-30-CLEUR-3122/
https://www.segment-routing.net/conferences/2019-01-30-CLEUR-3122/
https://orbi.uliege.be/bitstream/2268/245292/4/network-programming-phd-final.pdf
https://orbi.uliege.be/bitstream/2268/245292/4/network-programming-phd-final.pdf
https://books.google.fr/books?id=1zMyMQAACAAJ
https://books.google.fr/books?id=1zMyMQAACAAJ
http://dx.doi.org/10.5555/574848
http://dx.doi.org/10.1016/j.comnet.2010.05.017
http://dx.doi.org/10.1109/INFCOM.2001.916276
http://dx.doi.org/10.1109/INFCOM.2001.916276
http://dx.doi.org/10.1109/COMST.2017.2749760
http://dx.doi.org/10.1109/ICDCS.1999.776515
https://hal.archives-ouvertes.fr/hal-03034585
https://hal.archives-ouvertes.fr/hal-03034585
http://dx.doi.org/10.4230/OASIcs.ATMOS.2020.11
http://dx.doi.org/10.3390/s19010049
http://dx.doi.org/10.1002/net.3230140109
http://dx.doi.org/10.1002/net.3230140109
http://dx.doi.org/10.1109/TAC.2006.872827
http://dx.doi.org/10.1109/TAC.2006.872827
http://dx.doi.org/10.1109/INFCOM.2001.916274
http://dx.doi.org/10.1109/INFCOM.2001.916274

2002. An overview of constraint-based path selection algorithms
for qos routing. IEEE Communications Magazine 40, 50–55.
doi:10.1109/MCOM.2002.1106159.

[43] Lazzeri, F., Bruno, G., Nijhof, J., Giorgetti, A., Castoldi, P.,
2015. Efficient label encoding in segment-routing enabled opti-
cal networks. 2015 International Conference on Optical Network
Design and Modeling (ONDM) , 34–38.

[44] Lee, W.C., Hluchyi, M.G., Humblet, P.A., 1995. Routing sub-
ject to quality of service constraints in integrated communica-
tion networks. IEEE Network 9, 46–55.

[45] Liu, G., Ramakrishnan, K., 2001. A*prune: an algorithm for
finding k shortest paths subject to multiple constraints, in: Pro-
ceedings IEEE INFOCOM 2001. Conference on Computer Com-
munications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.01CH37213),
pp. 743–749 vol.2. doi:10.1109/INFCOM.2001.916263.

[46] Liu, W., Lou, W., Fang, Y., 2005. An efficient quality of service
routing algorithm for delay-sensitive applications. Computer
Networks 47, 87–104. doi:10.1016/S1389-1286(04)00213-0.

[47] Lorenz, D.H., Raz, D., 2001. A simple efficient approximation
scheme for the restricted shortest path problem. Operations
Research Letters 28, 213–219. doi:10.1016/S0167-6377(01)
00069-4.

[48] Loreti, P., Mayer, A., Lungaroni, P., Lombardo, F., Scarpitta,
C., Sidoretti, G., Bracciale, L., Ferrari, M., Salsano, S., Ab-
delsalam, A., et al., 2021. Srv6-pm: A cloud-native archi-
tecture for performance monitoring of srv6 networks. IEEE
Transactions on Network and Service Management 18, 611–626.
doi:10.1109/TNSM.2021.3052603.

[49] Luttringer, J.R., Alfroy, T., Bramas, Q., Clad, F., Mérindol,
P., Pelsser, C., 2021. Deploying Near Optimal Delay
Constrained Paths with Segment-Routing in Massive Scale
Networks. URL: https://doi.org/10.5281/zenodo.5535430,
doi:10.5281/zenodo.5535430.

[50] Luttringer, J.R., Alfroy, T., Mérindol, P., Bramas, Q., Clad,
F., Pelsser, C., 2020. Computing delay-constrained least-cost
paths for segment routing is easier than you think, in: 2020
IEEE 19th International Symposium on Network Computing
and Applications (NCA), pp. 1–8. doi:10.1109/NCA51143.2020.
9306706.

[51] Martins, E.Q.V., 1984. On a multicriteria shortest path prob-
lem. European Journal of Operational Research 16, 236–245.
doi:10.1016/0377-2217(84)90077-8.

[52] Martins, E.Q.V., Santos, J.L.E.D., 1999. The labelling algo-
rithm for the multiobjective shortest path problem .

[53] Matsushima, S., Filsfils, C., Ali, Z., Li, Z., Rajaraman, K.,
2021. SRv6 Implementation and Deployment Status. Internet-
Draft draft-matsushima-spring-srv6-deployment-status-11.
IETF Secretariat. URL: https://www.ietf.org/archive/id/
draft-matsushima-spring-srv6-deployment-status-11.
txt. https://www.ietf.org/archive/id/
draft-matsushima-spring-srv6-deployment-status-11.txt.

[54] Medina, A., Lakhina, A., Matta, I., Byers, J., 2001. Brite: an
approach to universal topology generation, pp. 346–353. doi:10.
1109/MASCOT.2001.948886.

[55] Namorado Climaco, J.C., Queirós Vieira Martins, E., 1982. A
bicriterion shortest path algorithm. European Journal of Op-
erational Research 11, 399–404. doi:10.1016/0377-2217(82)
90205-3.

[56] Paixão, J., Santos, J.L., 2008. A new ranking path al-
gorithm for the multi-objective shortest path problem.
undefined URL: https://www.semanticscholar.org/paper/
A-new-ranking-path-algorithm-for-the-shortest-path-Paix%
C3%A3o-Santos/d113dc9676607aa8018e972220f6cbb70838146d.

[57] Papadimitriou, C., Yannakakis, M., 2000. On the approxima-
bility of trade-offs and optimal access of web sources, in: Pro-
ceedings 41st Annual Symposium on Foundations of Computer
Science, p. 86–92. doi:10.1109/SFCS.2000.892068.

[58] Programme, G.F.N., . Network slicing : Use
case requirements. https://www.gsma.com/
futurenetworks/wp-content/uploads/2020/01/2.0_

Network-Slicing-Use-Case-Requirements-1.pdf. (Accessed
on 05/26/2021).

[59] Psenak, P., Hegde, S., Filsfils, C., Talaulikar, K., Gulko,
A., 2020. IGP Flexible Algorithm. Internet-Draft draft-
ietf-lsr-flex-algo-07. IETF Secretariat. http://www.ietf.org/
internet-drafts/draft-ietf-lsr-flex-algo-07.txt.

[60] Quoitin, B., Van den Schrieck, V., Francois, P., Bonaventure,
O., 2009. Igen: Generation of router-level internet topologies
through network design heuristics, in: 2009 21st International
Teletraffic Congress, pp. 1–8.

[61] Raith, A., Ehrgott, M., 2009. A comparison of solution strate-
gies for biobjective shortest path problems. Computers & Op-
erations Research 36, 1299–1331. doi:10.1016/j.cor.2008.02.
002.

[62] Reeves, D., Salama, H., 2000. A distributed algorithm for delay-
constrained unicast routing. IEEE/ACM Transactions on Net-
working 8, 239–250. doi:10.1109/90.842145.

[63] Sahni, S., 1977. General techniques for combinatorial approxi-
mation. Operations Research 25, 920–936.

[64] Savage, S., Collins, A., Hoffman, E., Snell, J., Anderson, T.,
1999. The end-to-end effects of internet path selection. SIG-
COMM Comput. Commun. Rev. 29, 289–299. URL: https://
doi.org/10.1145/316194.316233, doi:10.1145/316194.316233.

[65] Song, M., Sahni, S., 2006. Approximation algorithms for mul-
ticonstrained quality-of-service routing. IEEE Transactions on
Computers 55, 603–617. doi:10.1109/TC.2006.67.

[66] Tsaggouris, G., Zaroliagis, C., 2009. Multiobjective optimiza-
tion: Improved fptas for shortest paths and non-linear objec-
tives with applications. Theory of Computing Systems 45,
162–186. doi:10.1007/s00224-007-9096-4.

[67] Van Mieghem, P., Kuipers, F.A., 2004. Concepts of exact qos
routing algorithms. IEEE/ACM Transactions on Networking
12, 851–864.

[68] Ventre, P.L., Salsano, S., Polverini, M., Cianfrani, A., Abdel-
salam, A., Filsfils, C., Camarillo, P., Clad, F., 2020. Seg-
ment Routing: a Comprehensive Survey of Research Ac-
tivities, Standardization Efforts and Implementation Results.
arXiv:1904.03471 [cs] ArXiv: 1904.03471.

[69] Widyono, R., Group, T., 1994. The design and evaluation of
routing algorithms for real-time channels.

[70] Xin Yuan, Xingming Liu, 2001. Heuristic algorithms for multi-
constrained quality of service routing, in: Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No.01CH37213), pp. 844–853
vol.2.

[71] Zheng Wang, Crowcroft, J., 1996. Quality-of-service routing for
supporting multimedia applications. IEEE Journal on Selected
Areas in Communications 14, 1228–1234.

[72] Zhou, J., 1998. A new distributed routing algorithm for sup-
porting delay-sensitive applications, in: ICCT’98. 1998 Interna-
tional Conference on Communication Technology. Proceedings
(IEEE Cat. No.98EX243), pp. 7 pp. vol.2–. doi:10.1109/ICCT.
1998.741046.

24

http://dx.doi.org/10.1109/MCOM.2002.1106159
http://dx.doi.org/10.1109/INFCOM.2001.916263
http://dx.doi.org/10.1016/S1389-1286(04)00213-0
http://dx.doi.org/10.1016/S0167-6377(01)00069-4
http://dx.doi.org/10.1016/S0167-6377(01)00069-4
http://dx.doi.org/10.1109/TNSM.2021.3052603
https://doi.org/10.5281/zenodo.5535430
http://dx.doi.org/10.5281/zenodo.5535430
http://dx.doi.org/10.1109/NCA51143.2020.9306706
http://dx.doi.org/10.1109/NCA51143.2020.9306706
http://dx.doi.org/10.1016/0377-2217(84)90077-8
https://www.ietf.org/archive/id/draft-matsushima-spring-srv6-deployment-status-11.txt
https://www.ietf.org/archive/id/draft-matsushima-spring-srv6-deployment-status-11.txt
https://www.ietf.org/archive/id/draft-matsushima-spring-srv6-deployment-status-11.txt
https://www.ietf.org/archive/id/draft-matsushima-spring-srv6-deployment-status-11.txt
https://www.ietf.org/archive/id/draft-matsushima-spring-srv6-deployment-status-11.txt
http://dx.doi.org/10.1109/MASCOT.2001.948886
http://dx.doi.org/10.1109/MASCOT.2001.948886
http://dx.doi.org/10.1016/0377-2217(82)90205-3
http://dx.doi.org/10.1016/0377-2217(82)90205-3
https://www.semanticscholar.org/paper/A-new-ranking-path-algorithm-for-the-shortest-path-Paix%C3%A3o-Santos/d113dc9676607aa8018e972220f6cbb70838146d
https://www.semanticscholar.org/paper/A-new-ranking-path-algorithm-for-the-shortest-path-Paix%C3%A3o-Santos/d113dc9676607aa8018e972220f6cbb70838146d
https://www.semanticscholar.org/paper/A-new-ranking-path-algorithm-for-the-shortest-path-Paix%C3%A3o-Santos/d113dc9676607aa8018e972220f6cbb70838146d
http://dx.doi.org/10.1109/SFCS.2000.892068
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/01/2.0_Network-Slicing-Use-Case-Requirements-1.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/01/2.0_Network-Slicing-Use-Case-Requirements-1.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2020/01/2.0_Network-Slicing-Use-Case-Requirements-1.pdf
http://www.ietf.org/internet-drafts/draft-ietf-lsr-flex-algo-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-lsr-flex-algo-07.txt
http://dx.doi.org/10.1016/j.cor.2008.02.002
http://dx.doi.org/10.1016/j.cor.2008.02.002
http://dx.doi.org/10.1109/90.842145
https://doi.org/10.1145/316194.316233
https://doi.org/10.1145/316194.316233
http://dx.doi.org/10.1145/316194.316233
http://dx.doi.org/10.1109/TC.2006.67
http://dx.doi.org/10.1007/s00224-007-9096-4
http://dx.doi.org/10.1109/ICCT.1998.741046
http://dx.doi.org/10.1109/ICCT.1998.741046

	1 Introduction
	2 Back to the Future: DCLC vs SR
	2.1 Segment Routing Background and Practical Usages
	2.2 DCLC (Delay-Constrained, Least-Cost), a Well-known Difficult Problem having many Solutions?
	2.3 SR is Relevant for DCLC: MSD is not a Limit

	3 BEST2COP(E): Efficient Data Structures and Algorithms for Massive Scale Networks
	3.1 DCLC and True Measured Delays
	3.2 The SR Graph and 2COP
	3.2.1 Turning the Physical Graph into a Native SR Representation
	3.2.2 The 2COP Problem(s)

	3.3 Our Core Algorithm for Flat Networks
	3.4 For Massive Scale, Multi-Area Networks
	3.4.1 Scalabity in Massive Network & Area decomposition
	3.4.2 Leveraging Area Decomposition

	3.5 A Limited Complexity with Strong Guarantees
	3.5.1 An Efficient Polynomial-Time Algorithm
	3.5.2 What are the Guarantees one can Expect when the Trueness Exceeds the Accuracy? that is if t >

	4 Performance Evaluation
	4.1 Computing Time & Comparisons for Flat Networks
	4.2 Massive Scale Topology Generation
	4.3 Computing Time for Massive Scale Multi-Areas Networks
	4.4 Discussions and Ongoing Works

	5 Conclusion

