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The BGP Visibility Toolkit: Detecting Anomalous
Internet Routing Behavior
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Abstract—In this paper, we propose the BGP Visibility Toolkit,
a system for detecting and analyzing anomalous behavior in
the Internet. We show that interdomain prefix visibility can be
used to single out cases of erroneous demeanors resulting from
misconfiguration or bogus routing policies. The implementation
of routing policies with BGP is a complicated process, involving
fine-tuning operations and interactions with the policies of the
other active ASes. Network operators might end up with faulty
configurations or unintended routing policies that prevent the
success of their strategies and impact their revenues. As part of the
Visibility Toolkit, we propose the BGP Visibility Scanner, a tool
which identifies limited visibility prefixes in the Internet. The tool
enables operators to provide feedback on the expected visibility
status of prefixes. We build a unique set of ground-truth prefixes
qualified by their ASes as intended or unintended to have limited
visibility. Using a machine learning algorithm, we train on this
unique dataset an alarm system that separates with 95% accuracy
the prefixes with unintended limited visibility. Hence, we find that
visibility features are generally powerful to detect prefixes which
are suffering from inadvertent effects of routing policies. Limited
visibility could render a whole prefix globally unreachable. This
points towards a serious problem, as limited reachability of a
non-negligible set of prefixes undermines the global connectivity
of the Internet. We thus verify the correlation between global
visibility and global connectivity of prefixes.

Index Terms—Anomaly detection, BGP, Internet measurement,
machine assembly.

I. INTRODUCTION

HE performance of the global routing system is vital to

thousands of entities operating the Autonomous Systems
(ASes) which make up the Internet. The Border Gateway
Protocol (BGP) is currently responsible for the exchange of
reachability information and the selection of paths according
to specified routing policies. By tweaking the BGP configura-
tions, the network operators are able to express their routing
preferences, designed to accommodate myriad economic and
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technical goals. Despite the flexibility offered, the implemen-
tation of routing policies is a complicated process in itself,
involving fine-tuning operations. Thus, it is an error-prone
task and operators might end up with faulty configurations that
impact the efficacy of their strategies or, more importantly,
their revenues. Flawed routing policies cause for anomalies
to emerge in the Internet, including interdomain prefix leaks,
e.g., the case of Dodo leaking its full BGP routing table to
provider Telstra in February 2012 [1], prefix hijacks, e.g., the
well-known case of Pakistan Telecom hijack of YouTube [2] or
prefixes not being distributed everywhere, e.g., the case where
some multi-homed networks could not see the prefix of the
DNS K root server [3]. Over the last years, a lot of effort has
gone in the direction of identifying, classifying and eliminating
some of these anomalies [4].

Even when correctly defining legitimate routing policies,
unforeseen interactions between ASes have been observed
to cause important disruptions that affect the global routing
system [5], [6]. The main reason behind this resides in the
fact that the actual interdomain routing is the result of the
interplay of many routing policies from ASes across the In-
ternet, possibly bringing about a different outcome than the
one expected. Consequently, in order to ensure the efficiency
of their routing policies, ASes periodically control how their
preferences resonate in the routing system using, among other,
public looking-glasses or public BGP routing feeds.

In this paper, we argue that prefix visibility at the interdomain
level is a flag useful to detect cases of faulty configurations or
bogus routing policies, which disrupt the functionality of the
routing system. We say that a prefix is visible to an AS if the
latter has a stable active route in its BGP Global Routing Table
(GRT) for the prefix in question. We (loosely) define the GRT
as the routing table provided by an Internet Service Provider
(ISP) to its customers requesting a full routing feed. Each ISP
maintains its own version of the GRT, which may vary from one
network to another in terms of routes contained [7]. A prefix is
globally visible when almost all the ASes in the Internet have an
active stable route for it. In this paper, we show that the lack of
global prefix visibility can offer early warning signs for anoma-
lous events that, despite their impact, often remain hidden from
state of the art tools, e.g., [8], [9]. Additionally, we show that
such unintended Internet behavior not only degrades the effi-
cacy of the routing policies implemented by operators, but can
also point out problems in the global connectivity of prefixes.
In order to evaluate the global visibility of a prefix, we compare
the content of the GRTs from the ASes that make their routing
data public. We define Limited-Visibility Prefix (LVP) as stable
long-lived Internet prefix that is visible in the GRTs of at least
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two different ASes and in at most 95%! of all the GRTs in the
available sample. Contrariwise, we define the High-Visibility
Prefix (HVPs) as the prefix that is propagated in at least 95% of
all the GRTs in the available sample. Additionally, we identify
the Dark Prefixes (DPs) [10], which denote the LVPs that are
not covered by less-specific HVPs.

The work we present in this paper focuses on developing
techniques, tools and methodologies to assist network opera-
tors and researchers in understanding the manner in which BGP
routing policies take effect in the Internet and which may be
their possible impacts in the Internet ecosystem. The BGP Visi-
bility Toolkit aims to detect and analyze anomalous interdomain
behavior by separating the LVPs which are unintentionally gen-
erated in the Internet. The toolkit includes four different com-
ponents, given here, which are our main contributions.

1) We propose the BGP Visibility Scanner,? a tool which al-
lows network operators to check the visibility of their IPv4
and IPv6 prefixes and detect unintended policies. An ear-
lier version of this tool is documented in [11]. We have
publicly released the visibility scanner in November 2012.
Ever since, the tool has been well received by the opera-
tional community.3 The tool continues to evolve and to at-
tract a large amount of attention and feedback [12], thus
validating its usefulness for the operational community.
In Section II, we provide the detailed description of the
methodology we build into the scanner.

2) We assemble a unique ground-truth dataset of 20,000
LVPs, for which network operators themselves confirm
which is the expected visibility status of the prefixes re-
ported by the BGP Visibility Scanner. After comparing the
expected visibility status with the actual one reported by
the scanner, we label each of these LVPs as intended or, re-
spectively, as unintended to have limited visibility.An un-
intended LVP is a prefix whose visibility status in the BGP
Visibility Scanner does not match with the intentions that
the network operators reports in the ground-truth dataset.
Contrariwise, the intended LVP is a prefix for which the
intention of the network operator matches the visibility
status we can observe with the Visibility Scanner. Col-
lecting feedback from operators regarding their strategies
in terms of interdomain routing policies is not an easy task.
We invite the users who query our tool to participate in a
survey. The survey is optional and asks the users to provide
more information regarding the observed visibility status
of their prefixes. Additionally, we have actively been in
contact with various operators who asked for our support
while debugging their routing policies. The dataset brings
additional value in that it accurately documents distinct
causes for the limited visibility of prefixes in the Internet
and provides a deep understanding of the routing condi-
tions which allows them to emerge. It documents multiple

IThe choice of the 95% visibility threshold allows for a 5% error in the routing
tables sampling process, also accommodating possible glitches that may appear
in the data.

2The BGP Visibility Scanner is publicly available at visibility.it.uc3m.es

3We presented the BGP Visibility Scanner[11] in different network opera-
tors group meetings, including NANOG, LACNOG, UKNOF, EsNOG. We have
also announced it on RIPE Labs [9].
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cases of misconfiguration, unforeseen interactions and in-
tentional routing policies effects. In Section I1I, we further
expand on several of these examples.

3) We propose the Winnowing Algorithm [13], a machine
learning classification algorithm able to automatically dis-
tinguish the unintended LVPs, caused by misconfiguration
or unforeseen interactions between routing policies, from
the intended LVPs, which emerge as a legitimate expres-
sions of intentional routing policies in the Internet. Using
the BGP Visibility Scanner as a data mining tool, we blend
the per-prefix visibility information with the ground-truth
information from active users of the tool to generate an
alarm system for misconfiguration or bogus routing poli-
cies. The resulting Winnowing Algorithm has a 95% level
of accuracy. This further proves that visibility features are
generally powerful to detect anomalies that, despite their
impact on the routing system, are hard to single out due to
the limited and distributed nature of the data. We explain
in more detail the proposed approach in Section I'V.

4) We analyze the correlation between visibility and reach-
ability of both IPv4 and IPv6 prefixes [ 14]. Faulty configu-
rations, complex interdomain interactions or bogus routing
policies not only impact the efficacy of the intended routing
policies of ASes. Sometimes, these phenomena prevent
the prefixes to be learned altogether, making the attached
host globally unreachable. It is expected that /imited visi-
bility does not necessarily imply limited reachability, since
a less-specific high visibility covering prefix may provide
reachability. This is no longer true for the DPs, which
lack the covering less-specific prefix with high visibility
to ensure that the attached hosts are globally reachable.
We show that the lack of global visibility of a prefix does
imply a certain risk on its global reachability, especially
in the IPv6 Internet. While the IPv4 dark address space
can be largely explained as route leaks or mistakes, this
is not valid for the IPv6 DPs. We find that the subset of
IPv6 dark prefixes is highly unreachable. We believe that
this is a serious problem for the IPv6 Internet, as limited
reachability of a non-negligible set of prefixes undermines
the global connectivity of the Internet. We expand on the
methodology details and discuss our results in Section V.

II. BGP VISIBILITY SCANNER

Here, we describe the BGP Visibility Scanner, the tool we
propose for identifying prefixes with limited visibility at the in-
terdomain level from publicly available BGP routing data. The
tool has been active and available for the operational community
since November 2012, allowing any network operator to check
the visibility status of their prefixes. At the time of writing, the
visibility scanner detects on a daily basis more than 95 000 IPv4
and IPv6 LVPs. The daily set of prefixes with limited visibility
can be further queried using the BGP Visibility Scanner public
web page. We collect feedback on the intended visibility status
of the LVPs from operators of the networks originating the pre-
fixes and which are actively using our tool. This further enables
us to verify if the intention of the origin network is reflected in
the observed visibility status of its prefixes and to gather ground
truth on the various causes for LVPs.
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Fig. 1. BGP Visibility Scanner methodology.

A. BGP Visibility Scanner Methodology

In Fig. 1, we depict the main steps we follow for processing
the raw data according to the BGP Visibility Scanner Method-
ology. The methodology is structured in three steps: First, we
retrieve the raw BGP routing data. Second, we pre-process the
raw data in order to obtain the GRTs. Third, we follow the Visi-
bility Scanner Algorithm to evaluate the visibility of each prefix
within the sample of available GRTs.

1) Raw Data: Next, we expand on the first block of the
methodology flow depicted in Fig. 1. We collect the routing
information from two major publicly available repositories at
RouteViews and RIPE RIS. The two repositories gather BGP
data throughout the world, at the time of writing deploying 24
different collection points, to which we further refer as col-
lectors. The collectors periodically receive BGP routing table
snapshots, i.e. the content of routing tables at a certain mo-
ment in time from one or more routers within the ASes active
as monitors. A monitor represents a network (identified by a
unique Autonomous System number) that connects to the public
RIS/RouteViews repository to regularly propagate its routing
table snapshot. At the time of writing, there are more than 350
different active monitors in RIS and Routeviews. The monitors
have different policies with respect to the public repositories,
thus providing different types of routing table snapshots. We are
able to identify three different types of feeds that the collectors
receive, namely Partial Routing Tables,* Global Routing Tables
and Global Routing Table with internal routes.> However, only
by comparing GRTs, we can identify the HVPs and LVPs. We
further explain next how we differentiate between these three
types of routing table feeds in order to evaluate the visibility of
the prefixes in the GRTs alone.

Additionally, in order to address the confusion that con-
verging prefixes generate in our analysis by emerging as false
positive LVPs, we analyze two 8-h apart samples of raw routing
data. In other words, we retrieve the BGP routing tables twice

4This type of feed can be though as the result of establishing a peering-like
business relationship between the monitor and the collector. By definition, these
feeds are not GRTs, thus are not useful for our analysis.

5In some cases, it may happen that the monitor announces, aside from the
complete routing table, other additional internal information. This additional
information is again of no interest for our study, since we do not focus on the
internal operations of a network. Consequently, we need to identify and filter
out these particular routes within the complete routing feed.

every day, namely at 08h00 and 16h00 UTC. We use the two
different samples in order to ensure the correct separation
of routes with limited visibility as long-term expressions of
routing policies implemented by ASes and converging routes
or routes with temporary limited visibility due to internal
operational activities of the ASes.

2) GRTs: Cleaning and pre-Processing the raw Data: We
explain in detail the steps we take in order to pre-process the
raw data, as depicted in the second block in Fig. 1.

Size Filter: in order to exclude the Partial Routing Tables
from the whole set of feeds, we verify the actual size of the
routing table. We consider that an IPv4 GRT should have no
less than 400 000 routing entries [15]. Similarly, an IPv6 global
routing table should not contain less than 10 000 routing entries.
Consequently, we keep for further study only the routing feeds
that comply with the minimum limit on the number of prefixes.

Clean GRTs: we perform a couple of sanitary checks on the
actual data contained in the identified GRTs, in order to further
discard the information that is of no interest for our analysis,
namely bogons, MOAS and internal routes. Bogons are defined
as Martians, representing private and reserved address space or
Fullbogons, which include the IP space that has been allocated
to a Regional Internet Registry (RIR), but has not been assigned
by that RIR to an actual Internet Service Provider (ISP) or other
end-user. Using the bogons lists published for IPv4 and [Pv6 on
a daily basis at [16], we build the bogon filter. We apply this
filter on the content of all the GRTs, to eliminate any matching
or more-specific prefixes for the ones present in the bogon list.
The Multiple-Originating AS (MOAS) [17] prefixes cannot be
qualified within our study, since for these prefixes we are not
able to identify which origin AS might be suffering/generating
the reduced visibility of its prefixes. We eliminate all the iden-
tified MOAS. We filter out the cases of prefixes emerging as
LVPs that are, in fact, internal routes propagated to the collec-
tors by the monitors. To discard any potential internal paths, we
remove all the prefixes visible to only one monitor, which is also
the origin AS for the prefixes in question.

3) Visibility Scanner Algorithm: Here, we expand on the de-
tails of the proposed Visibility Scanner Algorithm. Having ob-
tained the “clean” version of the GRTs, we identify in this phase
the prefixes with stable limited visibility in the Internet. When
deriving the final visibility label, we account for the dynamics
of a prefix in time, as we show in the last block from Fig. 1.
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Labeling Mechanism: we use the two different GRTs taken
8-hours apart (i.e. 08h00 and 16h00 UTC) in order to ensure
the correct separation of the external long-term expressions of
the routing policies an individual AS implements and the con-
verging prefixes or the temporary LVPs due to internal opera-
tional activities. We evaluate the visibility degree at both sam-
pling moments and assign a visibility label at each time. We de-
fine the visibility degree as the number of GRTs within the daily
sample which contain (i.e., “see”) a certain prefix. The visibility
label shows the visibility status of each prefix at the sampling
time, i.e., LVP for Limited Visibility Prefix and HVP for High
Visibility Prefix. We evaluate the visibility degree of all prefixes
at the two different sampling moments and assign a visibility
label at each time. We label with LVP the prefixes present in
less than 95% of the GRTs at each sampling time. Otherwise,
we label the prefixes with HVP. Consequently, we assign to each
prefix at most two visibility labels.

Label Prevalence Sieve: at this point, we identify and discard
LVPs caused by other factors than routing policies, e.g. BGP
convergence. By analyzing the two visibility labels that we as-
sign in the previous phase to every prefix, we aim to avoid such
false positive LVPs. The high visibility of a prefix at either of
the two sampling times hints the fact that the route can be vis-
ible to all ASes active as monitors. Should this change during
the analyzed time, it might be a cause of, for example, topology
changes or failures. Therefore, we consider that the HVP label
always prevails, i.e. if a prefix is tagged as HVP at one sampling
time, it receives a final label of HVP. Otherwise, when the prefix
has no HVP label, we analyze the cases of LVPs emerging in our
results. If a prefix appears only at one sampling time and it has an
LVP label, this might be a sign that the prefix is in the process of
being withdrawn or, contrariwise, in the process of converging
after just being injected. These particular routes cannot be quali-
fied within the visibility scanner, thus we discard any prefix with
only one visibility label and that label being LVP. The only case
where we can say a prefix has final limited visibility is when it
has exactly two LVP labels.

B. LVPs in Rough Numbers

We make publicly available the set of LVPs identified using
the BGP Visibility Scanner methodology, so that each network
can potentially check the status of its prefixes. We refresh the
results on a daily basis, to give operators an updated view on the
efficiency of their routing policies, both in IPv4 and IPv6. We
present next a few statistics regarding the number of both IPv4
and IPv6 LVPs that we observe during the first 15 months when
the BGP Visibility Scanner has been active (i.e., from November
2012 until January 2014). We summarize this information in
Table I.

Every day we collect more than 500 routing feeds, for each
of the two different sampling moments. In rough numbers, the
daily total number of IPv4 prefixes is around 550 000 prefixes
at the time of writing. Out of these, around 10 000 IPv4 pre-
fixes are internal routes, which we discard. We also remove the
converging routes. This incurs the elimination of about 8000
additional IPv4 prefixes in average. For the remaining prefixes,
we continue the visibility analysis and assign LVP/HVP labels.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 2, APRIL 2016

TABLE I

IPv4 AND IPV6 BGP ROUTING DATA PROCESSING STATS
Data Stats IPv4 1Pv6
Number of GRTs 150 110
GRT size filter 400,000 10,000
Total Prefixes Analyzed 550,000 16,500
Number of LVPs 90,000 [20%] | 3,500 [20%]
Number of HVPs 420,000 12,500
Number of DPs 2,500 [3%] 500 [14%]
% ASes originating LVPs | 9% 13%
Internal Routes 10,000 150
Converging Routes 8,000 10

We identify, in average, 90 000 LVPs and 420 000 HVPs. When
checking how the two sets of prefixes overlap, we find that there
are more than 2500 IPv4 LVPs without covering HVP, which we
mark DPs. We observe that more than 3800 ASes inject LVPs,
out of which less than 1000 ASes originate DPs.

The size of the IPv6 GRT is much smaller than the one for
IPv4. We adjust the size filter to be at least 10 000 routes for
IPv6. We identify and further process the content of 110 GRTs to
determine the set of [IPv6 LVPs. The daily overall total number
of prefixes is approximately 16 500 prefixes. Out of these, we
discard in average 150 IPv6 prefixes that are internal routes ad-
vertised to the collector. We further eliminate the converging
routes, i.e., approximately 10 additional prefixes in average. On
average, 3500 IPv6 prefixes are LVPs and approximately 12 500
IPv6 prefixes are HVPs. In other words, 20% of all of the IPv6
prefixes identified from all of the analyzed routing tables are
LVPs. This is consistent with the result for the IPv4 LVPs, where
out of all of the prefixes learned, 20% have limited visibility
[11]. When checking how the LVPs and HVPs overlap, we find
that, for IPv6, there are more than 500 LVPs without a covering
HVP, which we label as DPs. This represents approximately
14% of the whole set of IPv6 LVPs. When comparing with the
situation in IPv4, where in average only 3% of the LVPs are
DPs, we find that we have almost 5 times more IPv6 dark ad-
dress space. This is relevant because these prefixes may have
limited reachability, in the lack of a default route. We further
analyze the correlation between the limited visibility and the
limited reachability of the LVPs in Section V. We observe that
more than 13% of all IPv6 active ASes inject LVPs and approx-
imately 5% of all IPv6 active ASes originate DPs. In IPv4, we
see that 9% of all ASes originate LVPs and only 2% are also
injecting DPs. These numbers may vary from day to day, given
that neither the monitors providing their global routing tables,
nor the actual content of the GRTs are constant over time.

III. GROUND TRUTH: UNDERSTANDING LVPs THROUGH
OPERATIONAL USE CASES

The daily set of LVPs is accessible in the BGP Visibility
Scanner for queries on a per-origin AS basis. At the time of
writing, the tool gathers over 8000 queries for more than 3000
different origin ASes. We invite the users of the tool to par-
ticipate in a survey regarding the expected visibility status for
the prefixes retrieved. We also inquire about the possible causes
generating the LVPs that the scanner detects. By doing this, we
aim to obtain more insights into why LVPs appear in the In-
ternet. Also, network operators directly contact us to provide
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information on the intended visibility status for their LVPs de-
tected with the visibility scanner. Leveraging the feedback re-
ceived, we build a unique ground-truth dataset including 20 000
LVPs. We compare the original intention of the operator with the
actual observed visibility status of the prefixes in the BGP Vis-
ibility Scanner, and distinguish two classes of LVPs: intended
and unintended. The ground-truth dataset contains 1150 pre-
fixes of the class intended and a staggering 18 850 LVPs of the
class unintended. Consequently, the dataset documents a signif-
icant variety of factors which generate LVPs, both intentionally
and unintentionally. We expand next on a few operational ex-
amples which we find to be most interesting.

A. Intended LVPs

Some ASes create LVPs on purpose. There are several ways
this can be done, including the use of BGP communities to
restrict the scope of a prefix advertisement (e.g., geographically
restricted prefixes aimed to offer connectivity only to networks
located in a certain region) or advertisements only through
(some) peering and not transit links. We next provide real cases
of ASes that deliberately restrict the global propagation of their
prefixes.

For example, using the BGP Visibility Scanner, we are able
to verify and validate the routing policies of two of the Internet
DNS root-servers. For each root-server we identify the pres-
ence of one more-specific LV prefix, which is meant to provide
connectivity only to direct peers and, consequently, is tagged
with the well-known NO-EXPORT community. The limited vis-
ibility of the more-specific prefix correctly reflects the impact of
the NO-EXPORT community on the connectivity of the prefix.
However, the LVP has global reachability due to the presence of
a less-specific HV'P, which is used by the root-servers in order
to avoid connectivity issues.

The tool also validates the routing policy of a large content
provider that deliberately limits the visibility of one of its pre-
fixes to a certain geographical area.

B. Unintended LVPs

The second type of use cases we present captures unintended
results of routing policies, i.e., accidental misconfiguration or
unforeseen interactions between external routing policies at the
interdomain level.

In many cases, LVPs are the result of errors in the configura-
tion of filters at the origin or other ASes that have received the
prefix announcement. For example, a large and widely-spread
ISP learned that a large set of its internal prefixes are visible
only to some of its direct peers. After further investigation, the
ISP was able to identify the misconfiguration of its outbound
filters, which should have otherwise ensured that those prefixes
were not being advertised to other networks. After correcting
these issues, the origin AS successfully eliminated 4,000 unin-
tended LVPs of whose existence it was previously unaware. We
note that these issues remained undetected for a very long time
before the BGP Visibility Scanner became operational. We ob-
serve a large number of LVPs were active for 150 days within the
period between June 2012 and April 2013. These LVPs then dis-
appeared around November 2012, after the origin ASes learned
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that it was accidentally leaking 4000 prefixes because of mis-
configuration.

A clear example of the serious impact that undetected mis-
takes might have on the strategies of a network is the case of an
ISP whose prefixes appear as DPs in the scanner. After investi-
gating this issue, the origin AS found that, due to a mistake in
the configurations of its transit provider, the ISP was not adver-
tising the prefixes of the AS in question. This not only means
that the prefixes are not globally propagated, but that they could
also be suffering from limited reachability in the Internet.

Unforeseen interactions between legitimate and correctly
defined routing policies of ASes can also limit the visibility
of some prefixes at the interdomain level. The ground-truth
dataset we collect includes cases of ASes which report that
the limited visibility of their prefixes is due to the impact of
the filtering policies of third-party ASes. More exactly, these
are cases of prefixes that do not have corresponding objects
defined in the Regional Internet Registry (RIR) database. Thus,
ASes that filter based on the information from the RIR database
discard such prefixes, impacting their global visibility. This,
consequently, causes prefixes to suffer from unintended limited
visibility. Using the BGP Visibility Scanner, network operators
are able to discover and address such cases of unintended LVPs.

Overall, as far as we know, the BGP Visibility Scanner has
been able to eliminate approximately 18,500 unintended LVPs
within the first 15 months of activity. We find that 14,600 out
the total 18,500 known unintended LVPs were already active on
June 1st 2012, as much as 5 months before the BGP Visibility
Scanner became available.

IV. WINNOWING UNINTENDED LVPS: THE MACHINE
LEARNING APPROACH

In this section, we propose the Winnowing Algorithm, the
machine learning tool we incorporate in the BGP Visibility
Toolkit to automatically separate unintended LVPs, which
emerge because of errors or complex interaction between
networks from the intended LVPs, which emerge as ex-
pected expressions of routing policies. The tool builds on the
ground-truth dataset collected with the BGP Visibility Scanner,
which we present in Section III. We use the BGP Visibility
Scanner as a a data mining tool for identifying stable LVPs and
monitoring their status in time. The supervised learning ap-
proach advances a decision tree model using specific visibility
features in order to classify the LVPs. We further show that the
per-prefix visibility features derived by monitoring the prefix
visibility status reported by the visibility scanner over a period
of two weeks are generally powerful to detect prefixes which
are suffering from limited unintended visibility.

Fig. 3 illustrates the different steps we follow to winnowing
unintended LVPs from the rest. We begin by describing the
visibility features we analyze to characterize each prefix from
the ground-truth dataset of 20 000 pre-classified LVPs. We then
present the proposed machine learning study design and expand
on the error measures we try to optimize. We advance a de-
cision tree model using the optimal set of visibility features,
chosen according to the information gain measure. Using the
AdaBoost [18] algorithm, we boost the obtained basic model
to achieve higher accuracy and reduce bias in this supervised



1242

b ‘ . \ Decision-Tree
S LvPs » Study Design S .
Induction
Supervised | Data Error Tree-based Boosted
Learning | Structure Measures Model Decision Trees

* Boost CART
* Find optimal
operational

point

e Evaluate
performance
on first-seen
test set

o Derive basic
CART model

* Choose
optimal
visibility

 Build ground-
truth dataset

o Train- * True positive
Validation- rate
Test Design * False positive
 Split dataset: rate
*Unknown Data: e ROC curves

* Add 9 visibility
features after
observing the
LVPs over 14
days.

features

o Verify
performance
with ROC
curves

10% for testing
* Known Data:

90% for

training-

validating

* 80% training

*20% validation

® Area Under
the Curve
(AUC)

Fig. 3. Winnowing Unintended LVPs: detailed methodology.

learning approach. We finally test the boosted tree-based model
on a hold-out dataset, which was not used during the learning
phase.

A. Data for Supervised Learning

We expand here on the way we pre-process the ground-truth
dataset to further use it for supervised learning. This corre-
sponds to the first step we illustrate in the work-flow in Fig. 3.
The ground-truth consists of 20 000 LVPs, each pre-classified
to indicate if the prefix has unintended limited visibility or if it
is the consequence of intended interdomain behavior. We note
that the dataset exhibits an important disproportion between the
two defined classes, with 1150 prefixes of the class intended
and 18 850 LVPs of the class unintended. In order to use the
ground-truth for training the machine learning Winnowing
Algorithm, we first identify the full set of significant visibility
features, which we attach to each prefix in the dataset. For every
LVP, the corresponding origin AS is observed over a period of
14 days prior to the feedback moment. We can thus characterize
the visibility dynamics captured in the BGP Visibility Scanner.
All the possible visibility parameters are listed and explained
in Table II.

B. Study Design

In this section, we explain the study design we follow for de-
riving the Winnowing Algorithm. This is depicted in the second
processing block in Fig. 3.

We design the learning process in a training-validation-test
format. In other words, we use cross-validation to estimate how
the classification model behaves on an independent never-be-
fore-seen set of data. Also known as rotation estimation, this
approach implies splitting the data into known data, which we
use for training and validation, and unknown data, also known
as hold-out test data, which we use for final testing. The idea
of cross-validation is to repetitively split the known data into
training and validation disjoint sub-sets, in order to estimate the
accuracy of the model. We use the training dataset to first derive
the classification algorithm. In order to avoid issues like over-fit-
ting and gain more insight on how the model could generalize to
new independent data, we then perform an initial testing on the
validation data. We further tune the decision model to achieve
optimal performance on the validation dataset. We manually re-
peat the training and validation for various ways to split the
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known data. In order to determine which is the algorithm with
the best results across all possible data splits, we define a set of
error measures that we explain in detail next.

1) Data Structure: When splitting the ground-truth dataset
into training, validation and the hold-out test data, we need to
fulfill several constraints, which we explain next. The three
datasets considered in the study design must be perfectly
disjoint, i.e., we should observe no prefixes nor origin ASes
in any two or more datasets. We thus split the ground-truth
such that all the LVPs generated by the same AS are included
in one unique dataset. We impose these restrictions in order to
ensure a correct estimation of the algorithm performance when
predicting the class of LVPs originated by unknown ASes, on
which we have no prior ground-truth for training. This is a
challenge, since predicting the class of LVPs originated by an
AS on which we have previously trained is significantly easier.

We first create the hold-out test dataset, by randomly
choosing 10% of all the ASes that provided feedback. This
hold-out test set is under no circumstances to be used in the
training-validation phase of the learning process. Its main pur-
pose is to estimate the performance of the optimal winnowing
algorithm on unknown independent data.

We split the remaining 90% of the ground-truth data in two
different subsets, namely the training and validation datasets.
We perform the separation such that the training dataset has ap-
proximately 80% of the remaining ground-truth dataset, and the
validation set, the 20% left. We respect this constraint for the
total number of prefixes and also for the number of different
ASes, i.e., 80% of ASes must be in the training dataset and the
rest of 20% in the validation dataset. Additionally, we require
that the 8020 split for the training-validation datasets is also
respected for each of the two classes of prefixes. In other words,
we must have 80% of the intended LVPs in the training and the
rest 20% in the validation dataset and the same for the unin-
tended LVPs. We impose these rules to ensure a similar distri-
bution of prefixes and ASes in the training and in the valida-
tion datasets. Given these constraints, we identify exactly 989
different ways in which we can separate the training-validation
datasets. In rough numbers, this means training on about 15,000
LVPs, validating on about 4,500 LVPs and, finally, testing on ap-
proximately 100 LVPs which were not used in the training-val-
idation process.

2) Error Measures: In this section, we define the error mea-
sures which we choose to describe the performance of the de-
rived classification algorithm. The accuracy of a classifier is
defined as the percentage of ground-truth tuples which are cor-
rectly classified when we test on a set of unknown data. How-
ever, even when we obtain a very high value for the accuracy of
the classifier, it may be the case that the model does not recog-
nize very well the tuples of one of the two classes. This hap-
pens especially when dealing with unbalanced classes in the
data, which is our case. To address these limitations and to fur-
ther evaluate the model performance, we define the following
concepts.

* True Positive tuples [TP]. number of tuples classified as

unintended, which really are of unintended class.

* False Positive tuples [FP]. number of tuples classified as

unintended, which really are of intended class.
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TABLE II
LIST OF PER-LVP VISIBILITY FEATURES. ALL THE VALUES ARE CALCULATED FOR AN OBSERVATION PERIOD OF 14 DAYS. THE FEATURES ARE ORDERED IN
DECREASING ORDER OF THEIR IMPORTANCE, ACCORDING TO THE INFORMATION GAIN

Extracted per-LVP Feature | Explanation

| Information Gain [weights] |

mean_nrPrefs Average number of LVPs generated by the same origin AS 0.319
mean_MonitorsDetecting| Average proportion of active monitors detecting the LVP 0.308
std_MonitorsDetecting | Standard deviation of the proportion of active monitors detecting the LVP 0.3068
std_nrPrefs Standard deviation of the number of LVPs generated by the same origin AS 0.3060
mean_VisibilityDegree | Average absolute visibility degree for the LVP 0.244
std_VisibilityDegree Standard deviation of the absolute visibility degree for the LVP 0.234
length Prefix length of the LVP detected by the BGP Visibility Scanner 0.183
TimeActive Proportion of time the LVP remained with limited visibility 0.153
VisibilityLabel Shows if the prefix has a covering less-specific HVP (i.e., LVP) or not (i.e., DP).| 8.61e-05

* True Negative tuples [TN]: number of tuples classified as

intended, which really are of intended class.

» False Negative tuples [FN]: number of tuples classified as

intended, which really are of unintended class.

We now can define the two error metrics which allow us
to correctly evaluate the performance of the classification by
capturing the per-class classification accuracy. Namely, we use
True Positive rate [TP,,;.] and False Positive rate [FP,,.],
which we calculate as follows:

TP
TPra‘e:P nintended intended) ~ ——M —
t (unintended | unintended) TP N
FPrage = P(unintended | intended) ~ ——
rate = P(unintended | intended) ~ s

In other words, the TP, represents the probability of pre-
dicting a tuple® as unintended, conditioned by the fact that the
tuple is indeed unintended. Similarly, the F' P, represents the
probability of classifying a tuple as unintended, conditioned by
the fact that the tuple is actually intended.

For each tuple, the decision tree classifier computes some
value between zero and one that can be interpreted as an es-
timation of the probability that the tuple belongs to the “unin-
tended” class. The categorical decisions of the classifier are the
result of setting a threshold, x4, on these probabilities, in such a
way that the tuples are classified as “unintended” if their prob-
ability is higher than g, and as intended otherwise. It then fol-
lows that the values of the TP, and the FP,,;, both depend
on y. For large 1 only the most probable tuples are assigned
to the positive class, which is useful to minimize false posi-
tives (i.e., small FP,,.), but at the expense of missing tuples
from the positive class (i.e. small TP, ). Contrariwise, smaller
thresholds increase the TP ..., but at the expense of increasing
the FP,,¢e as well. The two dimensional plot representing pairs
(FPate, T Prate) for different values of 1 is usually referred to as
the Receiver Operating Characteristic (ROC) curve. The ROC
curve is a standard way of representing the trade-off between the
positive and the negative class in binary classification problems.
Overall, the ROC curve gives an aggregated view on the perfor-
mance of the model, without reference to a specific threshold
value.

To assess the general performance of various models using
the ROC space, we measure the area under the curve (AUC).

%We call tuple the data structure consisting of the LVP and the corresponding
visibility features.

The ROC space usually shows an ascending diagonal line, cor-
responding to the ROC curve of a non-informative classifier (i.e.
one making stochastic decisions independent on data). As the
ROC curve goes closer to this line, the AUC goes closer to 0.5
and the model becomes less accurate, up to the point of random.
Consequently, an AUC closer to 1 shows high performance for
the model and an AUC close to 0.5 shows low performance.

We use the ROC curve to further tune the model and deter-
mine the optimal operating point for the classification model.
Note that, since each point in the curve corresponds to a dif-
ferent value of the discrimination threshold, selecting the oper-
ating point is equivalent to selecting a discrimination threshold.
This selection may depend on the design considerations. For in-
stance, if positive and negative examples are equally likely, the
operating point maximizing the sum between the TP, and
1 —FP,,:. could be a good choice, because this is equivalent to
maximizing the number of correctly detected tuples. However,
the decision model operating with this threshold may not pro-
vide good results on new datasets with different distributions of
tuples per class. To this end, a robust choice of the operating
point is the break even point. The latter represents the value of
the discrimination threshold where FP is equal to FN. It has been
proven that this point optimizes the performance of the classi-
fier under worst case conditions, i.e., under adversarial choices
of the class distributions [19].

C. Decision Tree Induction

After previously defining the data structure, error measures
and tools for assessing the performance of a classification
model, we next explain the constructive process we follow in
order to derive the decision tree-based Winnowing Algorithm.
Following the flowchart depicted in Fig. 3, we thus proceed to
the last block, namely the Decision-Tree Induction.

In the model, we choose decision trees as base learners which
are boosted to create a robust classification model. Tree-based
learning methods rely on iteratively partitioning the data into
smaller groups of similar elements [19]. The splitting of the data
is done using the features that best separate the two classes, in-
tended or unintended LVPs. The key idea is to chose the splits
which maximize the group homogeneity, i.e., elements of the
same class are within the same group, or until the groups are suf-
ficiently “pure.” Choosing the right number of splits is a chal-
lenge. We can easily over-fit the model by considering splits
that are very specific to the training data. Contrariwise, we can
under-fit it by considering shallow general splits. Finding the
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correct balance is conditioned by finding the optimal set of fea-
tures used to partition the data.

Decision tree induction is the process of deriving decision
trees from the training ground-truth datasets[19]. We use the
extensively tested and popular machine learning method called
Classification and Regression Trees (CART) [20] for deriving
and fine-tuning the base tree model. A CART tree is a binary
decision tree that is constructed by splitting the training dataset
into subsets based on a feature value test. The process is then
repeated on each derived subset in a recursive manner. The re-
cursion is completed when all the elements in a subset at a node
are of the same class or when splitting no longer adds value to
the classification. We derive the decision trees using the stan-
dard library tree for the R Project for Statistical Computing [21].
Using each of the 989 different training-validation splits, we de-
termine the optimal decision tree in every case. The resulting op-
timal CART trees are further used in the following step, where
by boosting we combine multiple CART base learners to form
a robust classification model.

In Algorithm I, we show the main phases we traverse in the
process of Decision-Tree Induction, which results in building
the final Winnowing Algorithm.

Algorithm 1 Decision-Tree Induction

1) Feature Selection
e forn=1,...,N:
* Learning from n features:
— append the n-th feature (ranked using the information
gain) to LVPs in the training set;
— for each of the 989 train/validation splits:
e grow CART base model;
» for each discrimination threshold value:
* compute TPtrain> TNtrain
— compute average ROC over the 989 ROC curves;
— compute AUC(n) for the averaged ROC curve;
 take subset of n* features maximizing AUC(n).
2) Boosting
« for each train/validation split (out of 989 possible):
— train AdaBoost using n* features
— compute TPtrain’ TNtrain
« compute threshold average ROC curve over all the
splits;
« take threshold value from the break-even point in the
average ROC.
3) Testing
 train AdaBoost using n* features and the whole dataset,
excluding hold-out test data;
« compute TP, TN on the test set.

1) Feature Selection: We expand next on the Feature Se-
lection phase of the Decision Tree Induction process, which
we succinctly describe in Algorithm 1. We perform the fea-
ture selection by ordering the visibility features decreasingly,
in function of their information gain. The information gain is a
widely accepted measure for evaluating the capacity of a feature
to distinguish between tuples of different classes. In the third
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Fig. 4. Threshold-average ROC curves for performance estimation of the de-
cision tree built with the 9 feature-sets. The red continuous curve for the model
using the 7 most important features has the highest AUC and, thus, constitutes
the optimal model.

column of Table II, we show the values of the information gain
metric associated to each of the 9 different visibility parame-
ters. In order to select the subset of features which ensures the
optimal performance of the base CART decision tree for any
training-validation data configuration, we adopt a progressive
approach.

For all the LVPs in the known training dataset, we begin by
considering the tuple formed by the LVP and the feature with
the highest value of the information gain, i.e., the mean_nrPrefs.
For each of the 989 training-validation splits of the known data,
we then grow the decision tree that uses only the value of the
mean_nrPrefs feature to discriminate between the two classes
of LVPs. We then test each of these 989 decision trees on the
validation dataset and derive one ROC curve for each of the
989 decision trees. We then calculate the average performance
over the 989 decision trees generated for each of the 989 splits.
We do so by calculating the average TP, and FP 44 over
the 989 ROC curves at every discrimination threshold value.
The average of the 989 values represents a single point on the
threshold-averaged ROC curve.

We repeat this process after adding each time one more
feature to the tuples in the training dataset. We add the features
in the decreasing order of the information gain value. For
example, if before we grew a classification tree only with
mean_nrPrefs, in this step we do so by using the mean_nrPrefs
and the mean _MonitorsDetecting, which is the feature with the
second-highest value of information gain. We then repeat the
process explained above for deriving the threshold-averaged
ROC curve for each subset of features. We depict in Fig. 4 the
threshold-averaged ROC curve for every of the 9 different
subsets of features considered for the tuples in the known
dataset used for training.

To identify which is the optimal set of features, we compare
the AUC for the 9 different threshold-averaged ROC curves in
Fig. 4. We observe that the classification tree using the first 7
most-important features has the highest performance, with an
average AUC equal to 0.94. In the overall best operating point
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for all the 989 data splits, the decision tree has an average TP a1
equal to 0.99 and an average FP,,;. equal to 0.1.

2) Boosting for Improved Accuracy: We previously find that
the optimal decision tree uses only the first 7 most-important
visibility features (as per the information gain value included in
Table II) to classify the LVPs. We now move on to the second
phase of the decision tree induction present in Algorithm 1,
namely boosting the base tree model.

Boosting is one of the most powerful learning mechanisms
proposed in the last 20 years, useful to improve the accuracy of
a classification algorithm [22]. The main idea behind this algo-
rithm is to combine many base classifiers (e.g., in our case, the
CART decision tree built with 7 features) to produce one robust
classification algorithm. Unlike other boosting algorithms, Ad-
aBoost [18] adjusts adaptively to the errors of the base learners
derived at each iteration. We use the AdaBoost.M1 algorithm
available from the publicly available package adabag [23] for
R.

In order to improve the classification performance across
all the possible data splits, we combine 50 such base learners
using the boosting ensemble technique. We run 50 boosting
rounds to make sure that we do not over-fit the algorithm to the
training data. After running experiments with variable numbers
of boosting iterations, we find that a number of 50 boosting
rounds improves the overall classification performance without
over-fitting the classification tree.

To guarantee a good general performance of the boosted tree-
based model with 7 features, we determine next the overall op-
timal discrimination threshold for the 989 splits. For each of the
989 boosted decision trees obtained, we derive the associated
ROC curve, to obtain an aggregated view of the performance of
each classifier. We then calculate the threshold-averaged ROC
curve of the 989 ROC curves.

In Fig. 5 we depict the resulting averaged ROC curve, which
we further use to calibrate the model. We first note that, indepen-
dently of the threshold value, the classification model is gener-
ally very accurate for any of the training-validation splits, with
an AUC equal to 0.997. Moreover, we observe that in the best
operating point, the decision algorithm has an average true posi-
tive rate equal to 0.98, and an average false positive rate of 0.05.
The average accuracy of the decision model is 98%. Though this
is a very positive result, our aim is to design a classification al-
gorithm which generalizes by accurately predicting for any pre-
viously unknown case of AS originating LVPs. Given that for
anew AS we do not have ways to learn the distribution of in-
tended and unintended prefixes, we choose as optimal operating
point the value of the threshold where the performance of the al-
gorithm is the highest for any possible distribution of prefixes
per class. In other words, we choose the value of the threshold
which gives the best performance under the worst known con-
ditions. This point is the break even point, where the threshold
value is equal to 0.6. In this operating point, the decision al-
gorithm has an average true positive rate equal to 0.99, and an
average false positive rate of 0.24. The average accuracy of the
tree-based model at the break-even point is 95%.

Though we observe a slightly weaker performance here than
in the best operating point, we ensure that the decision algorithm
at the break even point achieves optimal performance for new
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Fig. 5. Threshold-average ROC curve of the boosted decision trees derived
using each of the 989 possible data splits.

cases of ASes originating LVPs. We further refer to the boosted
tree-based classification model using the 7 most-important fea-
tures and operating with a discrimination threshold of 0.6 as the
Winnowing Algorithm.

3) Testing on the Hold-out Dataset: To further estimate
the Winnowing Algorithm performance, we test the model on
the hold-out independent dataset, which we did not use in the
training/validation phase. First, we train the prediction model
on all the available ground-truth data, encompassing both vali-
dation and training datasets. We then test the boosted decision
tree on the tuples from the hold-out dataset. The performance
of the winnowing algorithm is characterized by an average
true positive rate of 0.951, with a 95% confidence interval of
[0.87, 0.99] and an average false positive rate of 0.01, with
95% confidence intervals of [0, 0.02].We further calculate
the accuracy of the Winnowing Algorithm, by evaluating the
overall proportion of tuples correctly classified. The average
accuracy on the hold-out test set is 97.2%.

D. Discussion on the Machine Learning Approach

Though the machine learning approach is gaining popularity
for Internet-oriented applications, it is sometimes hard to un-
derstand the functionality of the mechanism. In this section, we
provide the intuition behind the decision rules implemented in
the winnowing system.

1) On the Visibility Features: One particularity of the
Winnowing Algorithm is that it only uses visibility features of
the ground-truth LVPs for classification. This set of features
is consistent with the operational status of the routing system.
For example, accidental routing leaks usually generate a large
number of prefixes at once. This explains why, in the context
of the Winnowing Algorithm, the most important feature used
to pinpoint unintended LVPs is the average number of LVPs
injected by the same origin AS. Also, a high variation in the
total number of LVPs from the same origin AS hints that the
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prefixes may not be stable expressions of long-lived routing
policies, but side-effects of routing errors. Additionally, we use
as features the per-LVP visibility degree and the proportion of
active monitors which “see” the LVPs. These two features cap-
ture the prefix visibility dynamics caused by variations in the
daily set of active monitors available. We observe that majority
of unintended LVPs have a stable visibility degree of 3, which
is consistent with the fact that misconfiguration usually affect
the routing policies of the ASes in the vicinity of the origin.
Furthermore, discarding the last two features, namely the 7ime-
Active and the VisibilityLabel, is also justified. For instance, as
previously observed in Section III-B, the lifetime of unintended
LVPs is longer than the lifetime of easily-noticeable anomalous
events, which are quickly fixed by the origin. For this reason,
the lifetime of unintended LVPs is consistent with the lifetime
of intended LVPs which appear as a result of the correct routing
policies. Thus, TimeActive does not discriminate well between
the two classes of LVPs.

2) On the Data Structure: One of the restrictions we im-
pose in the data structure proposed in the machine learning
study design is to include all the LVPs originated by the same
AS in the same dataset, namely training, validation or hold-out
test data. This restriction ensures that we correctly design the
winnowing mechanism to distinguish between LVPs from new
ASes that might be suffering from unforeseen events. How-
ever, it is also important to accurately classify new LVPs from
a network which already provided feedback used for deriving
the Winnowing Algorithm. In order to verify the performance
of the model for such cases, we perform a very simple ex-
periment. Namely, we split the dataset independently of the
origin AS. We withhold 100 random instances of each class
for testing and use the rest for training. We find that the
Winnowing Algorithm derived in Section IV-C-2 performs a
highly accurate classification of the test samples, only mis-
classifying one out of the 200 tuples. In other words, when
training on LVPs originated from one particular origin AS, the
algorithm has a fairly easy task in classifying other new LVPs
originated by the same AS.

3) On the Ground-Truth Lifetime: The ground-truth dataset
0f 20,000 LVPs documents a wide range of cases of long-lived
undetected anomalous events that are affecting the Internet en-
tities. Though the causes for the anomalies we detect are re-
curring in the Internet, their appearance in the BGP Visibility
Scanner may change in time. It is unclear at this point how the
validity of the ground-truth dataset and, consequently, the per-
formance of the Winnowing algorithm would be impacted by
the evolution in time of routing anomalies and of the routing
system itself. Additional amount of feedback from active users
of the visibility scanner can advance our understanding of the
evolution of LVPs in the Internet. Furthermore, a ground-truth
dataset covering a longer period of time would also allow us
to enhance the capabilities of the Winnowing Algorithm, since
this would offer more examples of intended and unintended
LVPs, while also capturing the evolution in time of the vis-
ibility parameters for routing anomalies. We leave for future
work the analysis of the lifetime of the ground-truth knowl-
edge we accumulate and the stability of the accuracy of the win-
nowing system in time.
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V. REACHABILITY AND VISIBILITY OF PREFIXES

Using the Winnowing Algorithm from the previous section,
we are able to accurately distinguish unintended LVPs, which
unexpectedly emerge in the Internet because of configuration
errors or bogus routing policies taking effect. This set of anoma-
lies not only impacts the efficacy of the intended routing policies
of the ASes affected. There are cases when the LVPs become
globally unreachable, since there might not always be a less-spe-
cific covering HVP to ensure that the destinations attached are
globally reachable. In this section, we aim to establish if prefix
visibility at the interdomain level can be further used to alert
ISPs about reachability issues their prefixes might be suffering.
In other words, we analyze next if the routing anomalies that
render a prefixes as LVP can also deteriorate the reachability of
the corresponding address space. To this end, we perform ac-
tive reachability measurements towards prefixes from all of the
three visibility classes, i.e. HVP, LVP and DP. Our goal is to
further verify the existence of a correlation between visibility
and reachability of prefixes in the Internet. For this analysis, we
focus on the set of IPv4 and IPv6 LVPs from the 8th of August,
2013.

A. Measurement Approach

We begin our analysis by presenting the approach we propose
to determine if a prefix is reachable from a given vantage point
in the Internet. Given the current stage of density of the IPv4
Internet, this should not constitute a concern when testing the
reachability of the address space. However, the challenge comes
from testing this for IPv6 prefixes, for which it is not a simple
task to find an address that is actually allocated to an active host
in any prefix. For consistency, we further design and employ the
same measurement approach both for IPv6 and IPv4 prefixes.

The idea we put forward is to probe the reachability of a
prefix with traceroute towards a random address contained by
the prefix. We can then check if the last node replying to the
traceroute belongs to the AS of the target prefix or to one of its
Internet providers, as observed in the BGP AS-Path. In other
words, our measurement approach is as follows.

* We send ICMP traceroute probes towards an IP address in

the target prefix.

* We say that the target prefix is reachable if:

1) The traceroute probe reaches the origin AS of the target,

i.e., the last AS which appears in the BGP AS-Path.”
2) The traceroute probe traverses the second-last AS in the
BGP AS-Path.8

Traceroute is one of the most widely used network measure-
ment tools, useful both to network operators and researchers.
Apart from the default traceroute [24], several other traceroute
approaches are available, namely UDP traceroute, TCP tracer-
oute and ICMP traceroute. The traceroute probing method we
employ is ICMP traceroute, which has been previously shown
to be the most successful approach in terms of replies received
[25].

7Usually, in the BGP AS-Path the last hop represent the origin AS of the
prefix, while the first hop represents the AS whose routing table we analyze.

8Following the order of the ASes in the BGP AS-Path attribute, the second-
last hop (2LH) in the AS-Path corresponds to the transit provider of the origin
AS.
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We include the second hypothesis in our measurement ap-
proach because there may be cases where, even if the probe
does reach its destination, it might happen that the AS of the
source IP for the last ICMP message received is actually the
transit provider of the target AS. This happens because it is a
common operational practice that ASes use addresses from their
providers for their transit links. As a result, the router within the
destination network that issues the last message of the tracer-
oute will do so using a source address that belongs to its ISP.
This may also be due to reachability problems in the last hop,
which our methodology is unable to distinguish.

B. Validating the Measurement Methodology

We validate our approach by checking the reachability status
of a set of prefixes which are a-priori known to contain at least
one reachable address. Our aim is to determine if the reacha-
bility of a randomly chosen IP address is representative for the
most-specific covering prefix. We use a control set of 70.000 ad-
dresses which are known to be reachable. This is made up of ad-
dresses from many sources, including DNS entries, Alexa's top
sites, and several other sources. For each of these addresses, we
retrieve the most-specific covering prefix installed in the BGP
routing tables. We use public routing data information to deter-
mine the most-specific prefixes covering each of these reach-
able addresses. The set of prefixes determined represents ad-
dress space known to contain at least one address that replies to
traceroute probing. These prefixes form the control set of pre-
fixes which we use for validation.

We test the methodology from a machine within a major
Japanese ISP, for which we also have the corresponding BGP
routing data. We send ICMP traceroute probes towards the
first IP address that is different from the address known to
be reachable within each of the prefixes previously inferred.
According to the proposed methodology, we consider that the
traceroute probe reaches the destination when it traverses either
the origin AS of the target, either the second-last AS (2LH)
appearing in the BGP AS-Path towards the target. In order to
identify the 2LH towards a prefix, we analyze the AS-Path
information in the BGP routing table of the AS from which we
are generating the traceroute messages.

After parsing the results of our traceroute tests, we learn that
the ICMP traceroute probes successfully reached more than
96% of these a-priori reachable prefixes. Consequently, the
methodology we propose is able to identify with 96% accuracy
the reachability status of an IPv6 prefixes. For the other 4% of
prefixes, our methodology is unable to determine reachability.
This may be due to several reasons, including ICMP filtering
or routers silently discarding packets.

C. Reachability of Visibility Classes

We further aim to establish the reachability for prefixes within
each of the three different categories of interdomain visibility,
namely DPs, non-dark LVPs and HVPs. We perform the reach-
ability measurements first from a single source, for which we
also know the state of the BGP routing at the moment of testing.
From the point of view of the measurement source, the High-
Visibility Prefixes are the prefixes contained in its BGP routing
table. There are in total 13,195 such IPv6 prefixes and 480,400
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IPv4 HVPs. These prefixes may not all have High Visibility,
since there may be other routing tables not “seeing” some of
these prefixes. We label all the rest of prefixes learned from the
rest of the routing tables collected from the public repositories as
Limited Visibility. LVPs reach a total number of 2,359 prefixes
for IPv6 and 87,397 prefixes for IPv4 at the time of the analysis.
In order to check if any of the Limited Visibility prefixes are in
fact Dark Prefixes from the point of view of the ISP, we check
which LVPs have a less-specific HVP in the ISP's routing table
to offer global reachability. We are thus able to single out a total
number of 511 IPv6 DPs and 2,917 IPv4 DPs.

In the case of the IPv6 LVPs which have a covering high-vis-
ibility IPv6 prefix (i.e., they are not dark), we observe that 94%
of the prefixes are reachable from the Japanese ISP's network.
For the IPv4 LVPs with covering HVP, we find that 89% were
reachable from the single vantage point used. This is consistent
with the precision of our tool, thus we cannot make any claims
about reachability problems in the LVP set. We next evaluate
the reachability status for the IPv6 and IPv4 DPs. We learn that
for more than 95% of these IPv6 prefixes, the traceroute probes
did not reach the target. Consequently, less than 5% of the dark
address space is reachable from the vantage point. This result
is further consistent with the reachability measurements per-
formed for the IPv4 dark prefixes, out of which less than 3%
were reachable from the vantage point. This results shows that,
contrary to the case of non-dark LVPs, where there might be
a less-specific covering HVP to ensure global reachability, the
DPs do present serious connectivity problems, when measured
from this single vantage point.

D. RIPE Atlas Measurement Methodology

Previously, we have seen that, because of the lack of a cov-
ering HVP, dark prefixes exhibit serious connectivity issues,
when tested from a vantage point in the Internet. In this sec-
tion, we further test if this is globally valid. We use the RIPE
Atlas Platform [26] to run large-scale measurements for char-
acterizing the reachability of the dark address space.

We zoom out from the previous localized analysis of reach-
ability, and test the reachability of the DPs from 100 different
probes active in the RIPE Atlas platform. We run the measure-
ments both towards IPv6 and IPv4 dark prefixes. More specifi-
cally, we test 473 IPv6 DPs derived from analyzing 110 IPv6
GRTs and 3,200 IPv4 DPs derived from analyzing 154 1Pv4
GRTs. We send ICMP probes towards a target IP address within
each of the v6 and v4 DPs.

We verify the reachability results in accordance with the
methodology proposed in Section V. Point (2) of the proposed
methodology requires to verify if the traceroute probe traverses
the provider of the origin AS for the target prefix. As opposed
to the previous case where we have the BGP routing table from
the AS hosting the traceroute source to analyze, we now do
not have access to the BGP routing tables corresponding to
the 100 Atlas probes used. In order to overcome this issue,
we build a set of probable second-last hops, which are likely
to be traversed towards each of the possible destination ASes.
We do so by analyzing all the available routing tables from the
ASes active in RIPE RIS and/or Routeviews, and monitoring
the ASes appearing as 2L Hs towards the origin AS of the target
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prefix. We then state that the target prefix is reachable if the
traceroute probe traverses ANY of the probable second-last
ASes towards the origin AS of the target prefix.

In order to further understand the impact of relaxing point
(2) of our methodology, we perform the following verification.
We first determine the set of probable second-last hops towards
every destination AS, without using the BGP routing informa-
tion from the AS hosting the machine we used to run the tracer-
oute tests in Section IV-C. We then verify the proportion of pre-
fixes for which the 2LH appearing in the BGP AS-Path from the
Japanese AS routing table is not among the set of 2LHs likely
to be traversed towards the target prefix. We find that only for
0.05% of the targets, the 2LHs appearing in the BGP AS-Path
of the Japanese ISP are not included in the set of probable 2LHs
derived from all the available GRTs.

E. Results

After processing all the traceroute measurements from each
of the 100 probes towards the Dark Prefixes, we conclude that
the average reachability degree® for an IPv6 DP is of 46.5%,
whereas for an IPv4 DPs it decreases to only 17.4%. To further
understand this result, we verify how the DP reachability corre-
lates with the visibility degree of a DP. We show in Fig. 6 the
scatter-plots both for IPv6 and IPv4 DPs' reachability against
their visibility within the corresponding sample of ASes ana-
lyzed. We observe that for the IPv6 DPs, depicted in the left-side
plot, there is a stronger correlation between reachability and vis-
ibility than for the IPv4 DPs. This happens because, for the [Pv4
DPs, we see a high number of prefixes with very limited visi-
bility, but which are highly reachable from the sample of 100
probes chosen. We observe that in the v4 plot from Fig. 6 there
are approximately 8% of IPv4 prefixes with visibilities smaller
than 0.2 and reachability larger than 0.2. As previously noted in
[27], this may be due to default routing in IPv4 or static routing
[28]. In Section III, we explain many of the real-life operational
reasons for which this type of IPv4 DPs emerge in the Internet.
For example, we observe in the lower-left corner of the IPv4
plot in Fig. 6 a very large number of IPv4 DP (approximately
72% of all the IPv4 DPs) with a reduced visibility degree and
a corresponding low reachability degree. According to the ob-
servations in Section IV-D regarding the intuition behind the
visibility features used by the Winnowing Algorithm, a small
visibility degree of the LVPs indicates the fact that the IPv4 DPs
we test may be effects of misconfiguration or bogus routing poli-
cies. For example, these IPv4 DPs may be route leaks which, as
we learn from the operational use cases explained in Section III,
often occur in the Internet. Consequently, the lack of reacha-
bility observed for IPv4 DPs is largely explained by the fact
that these prefixes are unintended to be visible in the Internet
to begin with. At the same time, even if the IPv6 DPs do not
follow the known symptoms of route leaks or anomalies previ-
ously learned from the IPv4 cases, they do struggle with impor-
tant lack of reachability. This further shows that, while in IPv4

9We define the reachability degree as the number of probes out of the 100
Atlas vantage points that successfully reach the traceroute target.
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Fig. 6. Scatterplot of reachability probability against the DP's visibility, for
IPv6 DPs and for IPv4 DPs.

the DPs are in majority results of mistakes or slips in the net-
work configuration, in IPv6 the DPs might appear as side-effect
of the early stages of development of the network.

Next, we focus on analyzing the reachability of DPs whose
ASes originate both IPv4 and IPv6 dark address space. To this
end, we separate only the DPs which are generated by ASes ac-
tive both in v4 and v6. In total, we test the reachability of 214
dark prefixes, out of which 88 are IPv6 DPs. We learn that, in
average, for the IPv6 DPs there is an average probability of 40%
of being reachable from a vantage point in the Internet, which
is consistent with the general reachability result for all the IPv6
DPs. This probability decreases to 20% for the IPv4 DPs, also
consistent with the overall reachability result for IPv4. Conse-
quently, there is no apparent correlation between the reacha-
bility of IPv4 DPs and IPv6 DPs originated from the same AS.
These prefixes actually follow the general reachability trends
previously established.

VI. RELATED WORK

Most of the work related to our efforts tackles the analysis of
BGP raw data, which can be tricky and difficult. There are nu-
merous efforts towards detecting security-related routing condi-
tions, such as prefix hijacking (e.g., PHAS [29]). Also, various
tools exist to provide useful information for operators [30], [31].
Multiple operational misconfiguration have been reported [4],
but attempts go far beyond this. They include RIPE Labs [9],
which has a whole section devoted to tools that assists opera-
tors or Renesys [32] and BGPmon [33], which operate this type
of services to operators for a fee. Unlike tools which integrate a
vast amount of operational problems [8], we do not focus on in-
ferring and/or monitoring the AS-level topology of the Internet,
but on monitoring the healthy deployment of routing policies
through prefix visibility. In this sense, our work is very closely
related to the work on BGP wedgies by Griffin et al. [6], [34].
However, none of those theoretical results is able to detect prob-
lematic routing conditions based on raw BGP observations. This
would otherwise require access to configuration files, which are
typically not shared. The latter are considered a company secret
which BGP was designed to hide, making it hard to be inferred
[35]. While we understand the limitations of BGP protocol mon-
itoring, we noticed that still a great deal that can be inferred. In
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this sense, our work aims at reporting and aggregating the infor-
mation to make it usable for operators. Despite that many other
similar tools [8], [9] leverage the massive amount of available
routing data, the BGP visibility scanner is, to the best of our
knowledge, the only tool offering specific information on global
prefix visibility.

Machine learning in the context of interdomain routing has
been already proven to be a successful approach. Using traffic
feature distributions, Lakhina et al. [36] show that the existence
of some anomalies can be detected from traffic flows. Further-
more, a Bayesian framework has been previously proposed for
detecting mistakes in the router configuration files using sta-
tistical anomalies [37]. Relying on network data, the usage of
statistical algorithms has been advanced to detect deviations
from the long-term profile of BGP routing updates [38]. Sim-
ilarly, an instance-learning framework has been previously rec-
ommended for identifying deviations from the normal defined
state of BGP routing dynamics [39]. Likewise, Li et. al advance
a rule-based framework for the detection of abnormal routing
behavior caused by a major worm or a blackout [40].

During the past years, IPv6 has received a lot of attention
both from the operational and the research community. Related
work looks into the transition of the IPv4 network infrastructure
to IPv6 [41] and how the Internet topology, routing and perfor-
mance across the two compares [42]. It had been proven that
the routing dynamics in the IPv6 topology are largely similar to
those know from IPv4, even if the degree of IPv6 deployment
is still far behind the IPv4 expansion [42].

VII. CONCLUSIONS

The BGP Visibility Scanner has proven its ability to trigger
valid visibility alarms and to help operators debug their routing
policies. We were able to help identify more than 18,000
unintended LVPs and assist the origin networks in identifying
their causes. Such prefixes can be easily missed since they are
often overlooked as valid expressions of intentional events.
For example, an ISP was able to learn that 4,000 of its prefixes
were leaking through some of its direct peers and were visible
in the Internet since at least 6 months before the query was per-
formed. Such events may stem as a consequence of the merger
between large ISPs whose configurations are consequently
changing. This type of transition may affect the visibility of
some prefixes, as it has been observed in the case of the Level3
- Global Crossing merger [43].

In light of the observed perpetuity of such anomalous inter-
domain events, we learn that there is an overall acute need for
a simple warning system for faulty configurations and/or prob-
lematic external routing conditions to assist operators in opti-
mizing the performance of their routing policies. We thus rely on
machine-learning to design a Winnowing Algorithm able to pre-
dict with 95% accuracy if a LVP is intended or unintended. We
leverage the robust machine learning concept of boosted classi-
fication trees [18] to train the system on ground-truth LVPs, and
thus enable it to learn the patterns of misconfiguration and bogus
routing policies which are normally hard to detect. Furthermore,
the classification model uses only visibility-related per-prefix
features in order to predict the class of the LVPs.
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While affecting the global visibility of prefixes, misconfig-
ured or unintended routing policies also impact the global reach-
ability of prefixes. Consequently, we research how the visibility
degree of a prefix impacts its global reachability. From multiple
vantage points in the Internet, including 100 RIPE Atlas active
probes, we test the reachability of both IPv4 and IPv6 LVPs.
We find that limited visibility does not necessarily imply limited
reachability, since there could be a less-specific HVP covering
the LVP to provide global reachability. However, Dark Prefixes
(DPs), which by definition do not have a covering less-specific
prefix, remain highly unreachable. Moreover, while the IPv4
dark address space can be largely explained as route leaks or
mistakes, this is not valid for the IPv6 DPs. We believe that this
is a serious problem for the Internet, as limited reachability of a
non-negligible set of prefixes cripples the fundamental function
of the Internet of ensuring global connectivity for every host at-
tached to it.
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