
Prototype Design for Scalable Support of
Interdomain Routes in a Single AS

Akeo Masuda
NTT Network Service Systems Laboratories

NTT Corporation, Japan

Cristel Pelsser
Internet Initiative Japan*

Kohei Shiomoto
NTT Network Service Systems Laboratories

NTT Corporation, Japan

Abstract—In this paper, we show a prototype implementation
for a new architecture of supporting interdomain routes. It is
widely recognized that the rapid growth of Internet is forcing
a scalability bottleneck to itself from the aspect of routing. We
propose a scalable way to support the Internet routes in a service
provider network. We make use of distributed servers that select
routes on behalf of the routers. Then, routes are stored in a
DHT so that the routers are freed from maintaining the full
route in the Internet. Our new routing architecture tackles the
scalability issue by reducing the number of routes needed to
maintain in each router, and the number of control messages
exchanged. We have developed a proof-of-concept prototype by
designing modules that compose route servers and ASBRs that
work in our proposed architecture. It will be used to confirm the
improvement mentioned above through performance evaluation.

I. INTRODUCTION
Recently, people started to discuss about designing the

future Internet architecture through a clean slate approach [1],
[2]. One of the major issues concerning today’s Internet is the
scalability of its routing protocols. In the last two decades, the
number of routes to be supported by the routers has become
very large. In September 2008, there were 125, 125 IPv4
entries inside the routeviews tables [3]. Moreover, predictions
say that this number will continue to increase in the future.
One research predicts that a router could have to hold 2 million
FIB entries in 2021 [4]. In addition to the number of routes,
the number of messages exchanged to distribute the routes
has increased even faster. In [5] it is predicted that the routing
entries may grow by a factor of two while the amount of BGP
advertisements will increase by a factor of four, in five years
time. The large number of routes and messages to be processed
leads to the performance degradation on BGP convergence
[6]. Therefore, Internet service providers may face a serious
problem concerning large cost for network equipment and poor
availability of the service.
Authors have previously proposed a novel routing archi-

tecture which can be deployed in a single AS to reduce the
number of routing entries and the number of BGP messages
exchanged between the routers in the AS, without forcing
changes to current BGP protocols that are used between ASs
[7]. Our solution is based on a simple principle of distributing
the route calculation process and the route table to multiple
entities. Distributed route servers (RS) calculate routes on
behalf of the ASBRs. For this purpose, ASBRs relay eBGP

*This work was done while the author was working at NTT.

messages to the RS who is responsible for the prefix indicated
in the message. ASBRs do not maintain the database to store
BGP routes learned or sent on the eBGP sessions. For a given
destination prefix, RS selects the same route for all the ASBRs
of a Point of Presence (PoP), and stores it to the Distributed
Hash Table (DHT) that the ASBRs in the PoP are joining. This
lets each ASBR of a PoP to maintain the portion of the Internet
routes. In case if there is no entry for the arrived packet in
the cache, the corresponding route is retrieved from the DHT.
Since the routes of a PoP are stored in the PoP itself, quick
route retrieval upon packet arrival is ensured.
We have developed a proof-of-concept prototype that runs

the proposed interdomain routing protocol. The prototype
consists of RSs and RS clients. RS clients act as the ASBR
to relay the eBGP messages learned by eBGP sessions, and
resolve the route by means of DHT for forwarding the
arrived packet. We have designed the ID/key structure and
searching mechanism in the DHT to maintain information of
interdomain routes. We aim to use this prototype to measure
the improvement that our proposal gives, through evaluation
concerning realistic conditions by using collected Internet
routes and packet trace. This paper describes the design and
implementation of our prototype. We also show some of the
running examples retrieved from a deployment of a sample
network.
In the next section, we describe the design of the distributed

routing table. In section III, we present how we have imple-
mented the required functions to the prototype. In section IV,
we show the experimental deployment and show some running
examples of the prototype. Finally we conclude the paper in
the last section.

II. DESIGN OF THE DISTRIBUTED ROUTING TABLE
In this section, we describe the design of the distributed

routing table. Fig. 1 shows how the BGP messages and the
calculated route are stored and retrieved in our proposal. Our
distributed routing table is achieved mainly by introducing two
concepts: the per-PoP route selection and the route resolution
based on distributed information storing/searching functions
of DHT.

A. Per-PoP Route Selection
Current ASBRs calculate routes by themselves since the

optimal route for a same destination may differ among the

R2 R3

R8

R5

R6

R4

R7
R9

P1

R11

R12

R10

P1

P1

eBGP

eBGP

eBGP

R1

(1) BGP Route for P1 is
collected to RS5 (iBGP)

(2) Route Selected
per PoP is stored to
routers (DHT)

RS5

RS10

(3) Search for route
to P1 (DHT)

Packet arrival

P7

P7

PoP1

PoP2

PoP3

PoP4

Fig. 1. Overview of the proposed protocol.

ASBRs in the AS. In our proposal, routes are calculated by
RSs on behalf of the ASBRs. However, RSs do not calculate
routes for each ASBR in the AS. Instead, for a given prefix,
RSs calculate one route for all the ASBRs in a PoP. We call
this a “per-PoP route selection”. A PoP is a set of ASBRs that
are present in the same location, for example in the same city
or the same building.
In the common design of the currently deployed service

provider’s networks, the IGP cost of inter-PoP links is usually
higher than intra-PoP link costs [8]. This ensures that traffic
originated in and destined to the same PoP stays in the PoP. For
this, inter-PoP path is consistent for all the ASBRs in a PoP.
Thus, all the nodes in the PoP can use the same routes, and
selecting one route per-PoP is enough for the RS. Furthermore,
this enables the routing table to be shared among ASBRs in
a PoP by way of DHT.

B. Route resolution based on DHT
Each ASBR of the PoP maintains only a portion of the

routing table. When an ASBR needs a route that is not present
locally, it requests the route from another node in its PoP. Since
all the ASBRs in a PoP are in the same location, retrieving a
route from a neighboring node is fast.
In our proposal, routes are stored in a DHT. DHT provide a

framework for the distribution of the routes on multiple nodes.
We choose to use Kademlia [9] due to the following properties
of this DHT:
1) The search functionality in Kademlia is based on the

XOR metric. As we will show in the next section, this metric
is suitable for searching for a prefix.
2) The information is replicated on multiple nodes. Repli-

cation provides robustness in the face of the failure of a DHT
element. In our case, routes are still available if a network
element fails, if the DHT graph is not partitioned.
3) In Kademlia, replication increases with the popularity of

the information. It requires less messages and it takes less time
to retrieve popular information. This property is suitable to the
popular destinations trends observed in the Internet traffic [10].
Kademlia is currently used as a file tracker in BitTorrent,

the widely deployed peer-to-peer network for file sharing. It

enables to quickly find a list of nodes that participate in the
torrent for the distribution of the searched file.
We observe that the XOR metric is appropriate for IP desti-

nation and prefix comparison. IP packets are routed according
to the longest match prefix. Let’s assume that an ASBR has
routes for 66/8 and 66.249/16. Today, when an IP packet
with destination address 66.249.89.147 is received, the ASBR
routes the packet according to the route for prefix 66.249/16.
The XOR metric is consistent with this practice. With the XOR
metric, the longest match prefix 66.249/16 will be closer to the
IP destination than the other prefix. It will thus be preferred.
We use the procedures of DHT for RSs and the ASBRs to

work in our proposal. findNODE is used for RS to find the
appropriate ASBRs to deliver the calculated per-PoP routes.
STORE is used for RS to push those routes to ASBRs found
by findNODE. findV ALUEandNODE is used for AS-
BRs where a packet has arrived to retrieve the route from other
ASBRs in the same PoP. Here, findV ALUEandNODE is
our modification to the findV ALUE procedure in order to let
the ASBRs continue searching routes to look for the longest
matching prefix.
After the route is retrieved for the arrived packet, the packet

is encapsulated with the destination address of the egress
ASBR in the AS. This enables the packet to be forwarded
to the egress ASBR by IGP routing. This enables that ASBRs
in a PoP do not need to maintain or retrieve interdomain routes
of other PoPs for forwarding packets.

C. Discussions
Route table distribution that is enabled by these mechanisms

provides scalability in terms of number of routing entries
maintained in the routers. In [7] we have shown an analytical
study on the number of entries required at the routers in each
routing architectures. According to the numerical examples
where the number of ASBRs in a PoP is assumed to be 20,
ASBRs in the proposed architecture only needs to maintain
0.8 million entries, while legacy ASBRs with sparse iBGP
topology needs to maintain 7.6 million entries.
However, since some of the routing retrieval depends on

DHT, arrived packet might be forced to wait until the ASBR
retrieves the route for that packet’s destination. Since the
retrieval time in DHT depends on the number of peers, this
issue may be critical to ensure forwarding performance in
some paticular configuration of the number of ASBRs in the
PoP. For this issue, we plan to make measurements using a
prototype implementation of the proposed protocol.

III. PROTOTYPE IMPLEMENTATION
In this section, we describe how we have implemented the

required functionalities in the prototype.

A. Software architecture
The prototype consists of RSs and the RS clients. RS clients

are the ASBRs in the PoPs that are capable of the proposed
protocol. Some of the routers may work as an RS and an RS
client at the same time.

Pelsser Cristel

Pelsser Cristel

RSRS Client (ASBR)

BGP module

DHT module

RS selection

BGP routes
(eBGP) BGP routes

(iBGP)

RS Client (ASBR)

eBGP
iBGP

Route decision

BGP module

DHT module

RS selection

eBGP
iBGP

Route decision

RS Client (ASBR)

BGP module

DHT module

BGP module

DHT module

Packet
arrival findVALUEandNODE

findNODE,
STORE

Fig. 2. Modules compose RS and RS Client

Usually, network entities negotiate what protocol to use
between them by informing the functions they are capable.
In our prototype, we use the capability feature of the BGP
OPEN message to negotiate the “Route-Server” and “Route-
Server client” capabilities [11]. We assign the code 250 to the
“Route-Server Capability” and code 251 to the “Route-Server
Client Capability”. The RS ID and the PoP ID are set in the
32 bit field of the capability value of Route-Server Capability
and the Route-Server Client Capability, respectively.
As shown in Fig. 2, RSs and the RS clients are composed of

two modules that we have developed: the BGP module and the
DHT module. Users can choose which to launch, as an RS or
as an RS client in the PoP, via command line or configuration
files. PoP ID and the RS ID (if it is a RS) are set by the
parameter when it is launched.
The BGP module is developed based on the existing open

source routing software, Quagga (ver. 0.99.11).The DHT mod-
ule is developed based on one of the existing open source
implementation of Kademlia, Entangled (release 0.1).
Here we describe how the functionalities of RS and RS

client are achieved by the development of BGP and DHT
module.

B. Implementation of RS
1) Collection of interdomain routes: RS receives the BGP

route from ASBRs with the iBGP capability enabled by the
function in Quagga. In our prototype, an RS needs to set up
iBGP sessions with all the ASBRs in the AS. This is for
collecting all the BGP routes that the RS is responsible.
2) Per-PoP route selection: RS computes the route for each

prefix in the notified BGP route. For a given destination prefix,
RS computes two best routes for each PoP. When a route is
sent to the RS, it starts the BGP path decision process as
the traditional BGP routers. Modification in this process is to
enable “per-PoP route calculation”. Since RSs calculate routes
on behalf of the ASBRs, it concerns the location of the ASBRs.
For this, we change the route decision rules implemented in
Quagga. The current BGP Decision Process (DP) is shown
in table I. The 4th and the 5th rules of the DP make use
of the location of the ASBR in the topology. These rules
ensure hot-potato routing. We have changed the 4th rule of the

BGP decision process to: “If the NH of the route is directly
connected to one of the routers of the PoP for which the
selection is performed, select this route”. In the 5th rule, the
route server will keep the routes with NHs that are the closest
to the considered PoP. Since intra-PoP paths have lower IGP
cost than inter-PoP paths [8], the 5th rule of the DP can rely
on the IGP cost from any node in the PoP to the route’s NH.
This cost is computed from the link costs distributed by the
IGP. According to this decision rules, the RS selects two best
Next-Hop (NH) for the packet arrived at the ASBRs. Selecting
second best NH in addition to the best NH is to allow fast
restoration and load balancing of the traffic from a PoP on
multiple ASBRs.

TABLE I
SIMPLIFIED BGP DECISION PROCESS (DP)

Sequence of rules
1 Highest Loc_pref 4 eBGP over iBGP
2 Shortest AS-path 5 Lowest IGP cost to NH
3 Lowest MED 6 Tie-break

3) Delivery of the calculated routing information: Route
calculated by the per-PoP route selection is delivered to the
appropriate ASBRs in each PoP through the DHT store proce-
dure. After the BGP module in the RS carries out the per-PoP
route calculation, it handles the generated route information
to the DHT module running in that RS in order to distribute
it to the RS clients. In our prototype, the route information is
generated as a file, and the DHT module periodically checks
if the file is updated.
DHT module in the RS delivers the route information to

appropriate ASBRs in each PoP through the “findNODE”
and “STORE” procedure in Kademlia. This does not require
changes to the store implementation of Entangled.
Nodes in Kademlia are assigned an identifier (ID). More-

over, each piece of information is assigned a key. Keys and
node IDs belong to the same domain, the set of naturals that
can be represented in 160 bits.
IDs and key are compared in order to determine the node

to store the information, and search the node who stores the
information. Criteria for determining which node to store the
information is the distance of the ID and the key based on
the XOR metric. Information will be stored in k nodes whose
IDs are closest to the key of the information. k is called the
replication parameter. In our prototype, RS uses this STORE
procedure to deliver the route information calculated for each
PoP. RS finds k ASBRs that have the closest ID to the key of
the calculated route information.
Distance based on the XOR metric is given as follows. We

define Node ID and the key of a route information kras:
• NodeID::=< PoPid >< hash >
• kr ::=< PoPid >< prefix >< mask >< padding >

< PoPid > identifies the PoP for which the route is destined.
It is 32 bits long. < hash > is 128 bits long. < hash > is
obtained by applying MD5 on a randomly generated number.
< prefix > is a 32 bits IPv4 prefix and < mask > is the
mask for the IPv4 prefix. The mask is also 32 bits long. <
padding > is 64 bits long. All these 64 bits are set to 0.

Distance between two values based on XOR metric is
indicated by the position of the first bit that differs. First,
compare the bits starting from the left and stop once the two
bits are different. Counting the position of these bits starting
from the right gives the distance between the key and the node
ID.
RS interacts with the ASBRs with the findNODE RPC,

and makes the STORE RPC to the ASBRs that have the IDs
that are the k closest. The procedure to store the information to
the k closest nodes is not changed from the original Kademlia.
Our definitions of kr and Nodeid ensure that routes destined
to a PoP will preferably be stored in nodes of the PoP. This
is because for a node in a PoP and a route destined to this
PoP, the first 32 bits of the node ID and the route’s key are
identical.
Calculated route is encoded in the format of the value

component as follows.
• v ::=< version >< length >< NH1 >< pref1 >

... < NHn >< prefn >

n corresponds to < length >. The value may consist of
multiple NHs to which the traffic destined to the prefix may
be sent. A preference is assigned to each NH. Setting multiple
NHs in a route enables an ASBR to perform restoration upon
a failure as well as to load balance the traffic on multiple
paths during normal network operation. In our prototype, we
consider n = 2.

C. Implementation of RS Client
1) Exchanging interdomain routes (eBGP): BGP module

provides BGP capabilities for an ASBR to act as an RS client.
RS client capable routers are able to set up eBGP sessions with
peer ASBRs outside of the AS. eBGP capabilities are enabled
by the functions of Quagga. However, for the concept of the
distributed route calculation at the RSs in our proposal, we
changed some functions of the Quagga implementation.
When the ASBRs learn BGP route on the eBGP session, it

simply forwards the message. They do not run the BGP path
selection, and they do not execute the update of FIB. They do
not even create the adj-RIB-in/out database.
ASBRs only transfers the messages received from the peers

to the RS, vice versa. It does not relay the messages from a
peer to another peer. It neither relays the messages from an
RS to another RS.
2) Forwarding interdomain routes to the RS (iBGP): RS

clients that learn interdomain routes on eBGP sessions set up
iBGP sessions with each RS in the AS. It forwards the eBGP
message to the RS that is responsible for the destination prefix
indicated in the message. Setting up iBGP sessions between
ASBRs and RSs are also enabled by the function of Quagga.
As mentioned before, RSs are responsible of the portion of
the destination prefix space. Here we add a function to select
the RS to send the BGP route. Prefixes are assigned to an
RS as follows. Each RS is assigned an ID. The set of RS
IDs is noted R. There is a function that maps each prefix
to a key. Route servers’ identifiers and prefix’s keys belong
to the same domain K. Thus, R ⊆ K. Each RS with ID

ri is responsible for prefixes with key k comprised in rj <
k ≤ ri, where rj , ri ∈ R and rj is the largest ID, that is
smaller than ri, assigned to an RS. In the implementation, we
defined RS IDs with a 32 bits IPv4 format. For the comparison,
IDs may be converted into decimal numbers. For example,
an RS ID A.B.C.D will be converted to a decimal number
A ∗ 2563 + B ∗ 2562 + C ∗ 256 + D and used for comparison.
According to the result of this calculation, ASBRs sends the
BGP route to the selected RS. Note that path decision is made
by the RSs. Therefore, path attribute in the route information
that ASBRs informs the RS should not be updated by the
ASBRs.
3) Distributed routing tables: RS client can act as an ASBR

to forward a packet that is injected to the AS. As explained
above, routing information for forwarding the packet is gen-
erated and delivered from RSs. Set of routing information for
the ASBRs in a PoP will be distributedly maintained among
the ASBRs in a PoP. We use radix tree for the data store in
the DHT module. Prefix and the mask in the kr are used for
the search key. Values stored for each key contains the best
route (i.e. address of egress ASBR) for that prefix, second best
route, last published time, originally published time, and the
node ID of whom published it. Persistence of the key-value
pairs are ensured by periodical re-publishment which provided
by the original Kademlia function.
4) Routing information resolution for packet forwarding:

When a packet to be forwarded was injected to the AS, DHT
module of the RS client retrieves the routing information
from the distributed data store in the PoP. This is basically
provided by the existing functions of Entangled, but some of
the procedures are added. First, if there is no routing entry
found in its own data store, DHT module in the RS client
searches its k-bucket, a list of contact nodes, to retrieve k
nodes whose ID is closest to the key of the destination address
of the packet.
However, the matching prefixes for the packet’s destination

are not known in advance. A fortiori, the most specific
matching prefix is not known. Thus, kr cannot be built. We
define a different key to retrieve a route from the system. This
key is denoted as follows.

• kd ::=< PoPid >< DestinationIPaddress ><
mask >< padding >

< PoPid > is the identifier of the PoP in which the packet
is received. < IP > is the packet’s IP destination address.
It is 32 bits long. The mask is composed of 32 bits set to 1.
Finally, the < padding > is 64 bits long. All these 64 bits are
set to 0. The presence of < PoPid > at the head of the key
enables to contain route search in the PoP and, thus, quickly
find the route computed for the PoP.
The distance based on XOR metric is calculated the same

way we explained above. Then it sends findV ALUE RPC
to those k closest ASBRs. DHT module in the ASBRs that
received this RPC will search for this key in its radix tree, and
make a reply.
Since the key of the stored route and the key to look up

for a route are different, we need to add some changes to the

original Kademlia’s look up procedure based on the algorithm
we have shown in [7], 1 and 2.
If the routing entry is found by its reply, the packet will

be able to forward. In original Kademlia, nodes received
findV ALUE RPC replies the node ID which is k closest
to the key ONLY when it doesn’t store the value to the
key. For continuing search in the PoP in order to look for
route information with much specific prefix, we change this
process. In our prototype, nodes received findV ALUE RPC
will reply the k closest nodes that it knows, even it has the
value to answer. DHT module in the ASBR who sent the
findV ALUE RPC will update its k-bucket according to the
reply, and makes findV ALUE again to the nodes included
in the k closest, if it has not been contacted yet. Therefore,
we call this a findV ALUEandNODE RPC, instead of
findV ALUE RPC.
In original Kademlia, in case no value was retrieved with the

sequence of findV ALUE, the node who requested the value
will give up retrieving it. In our prototype, the ASBR where the
packet arrived will continue searching with modifying the key.
Each time the sequence of findV ALUEandNODE comes
up with no result, it will change the last bit that is “1” at the
destination address part in the key kd.

Algorithm 1 retrieveRoute(kd)
1: repeat
2: {search for a less specific prefix if a matching route is

not found for the initial kd}
3: Nnew=N=a {first search in the local node}
4: {Initialize Nnew in order to not override N in the first

execution of the loop}
5: repeat
6: {search for the most specific prefix for kd}
7: N=Nnew

8: (Nnew, P)=findMatchingRouteInClosestNodes(N ,kd)

9: if (P �= ∅) then
10: r=mostSpecificNewestRoute(P, r)
11: installInFIB(r)
12: end if
13: until (Nnew ⊆ N)
14: kd=resetLastIPAndMaskNonZeroBits(kd)
15: until (defined r)
16: replicate(r)

Note that encapsulation and forwarding of the packet is not
implemented in our prototype. Since this procedure relies on
existing functions actually running in the routers, we believe
it doesn’t need to be shown that it is implementable.
5) Replication of the routing information: When an ASBR

retrieves a value for the key, it stores the information not only
in its data store, but also to other nodes that are desirable
to store it. After the sequence of findV ALUEandNODE
finishes, the requesting ASBR updates the k-bucket. If there
were ASBRs that did not reply the value in spite that it is
one of the k closest nodes, the requesting ASBR will send

Algorithm 2 findMatchingRouteInClosestNodes(N ,kd)
1: if (|N | = 1 and N = a) then
2: Nresult=getClosestNodes(kd)
3: Presult=getMostSpecificRoute(kd)
4: else
5: for (n ∈ N) do
6: (Nnew, Pnew)=sendFindRoute(kd, n)
7: Nresult=Nresult ∪Nnew

8: Presult=Presult ∪ Pnew

9: end for
10: end if
11: return (Nresult, Presult)

STORE RPC to make a replication of that information. Each
stored routing entry has a timer. ASBRs refresh the timer
when the information is used, and deletes the entry when
the timer expires. This process works as an optimized cache
that the entry that is frequently used will be maintained in
many ASBRs. This leads to reduce the time required before
forwarding the packet, by enabling the packet forwarding
without the need of DHT message exchange.

D. Measurement functions
We have added to our prototype a capability to output

various items of information that are recorded or measured
while running the system. The major outputs are: trace logs,
display of running configuration, and the measured statistics.
Statistics show us the important values of performance for the
evaluation of the proposed architecture. Items of statistics that
the prototype can show are listed in table II. For example, by
the item “memory consumption” we are able to know and
compare the memory size required for routers running the
original BGP, and those running our proposed protocol.

TABLE II
ITEMS OF STATISTICS

BGP module Memory consumption for each information
Number of iBGP sessions
Number of iBGP messages sent per session
Number of total iBGP messages sent/received
Number of UPDATE messages on iBGP session
Number of UPDATE messages on eBGP session
Route decision result

DHT module Number of sent RPCs for each DHT procedure
Elapsed time for each DHT procedure
Number of routes maintained (total and per radix tree)
Memory size consumed to maintain the routes
(total and per radix tree)
Number of entries in the k-buckets
Memory size consumed by k-buckets

IV. EXPERIMENTAL DEPLOYMENT
A. Overview of the sample deployment
In this section, we describe a running example of the

prototype. A RS or an RS client ASBR is deployed on a single
Linux system. Linux systems are actually a virtual machine
generated upon a single server hardware using Xen.We use
CentOS 5.2 for the Linux, and the whole system is running

R1

R2

R4

R5

R3

R10

R9

R7

R8

R6

R11
R12

R13

PoP1
PoP2

PoP3

RS

Fig. 3. Sample AS network topology consists of 13 ASBRs and an RS.

on a server which has two quad core processors and eight
GBytes of memory.
As shown in Fig.3, 14 servers that act as an RS and 13

RS client ASBRs are set up. They are divided into three
PoPs. BGP routes are injected on the eBGP sessions from
independent servers running a BGP emulation software.

B. Measurement results
We have tested the prototype implementation described

above by injecting 8 of sample BGP routes and also by
emulating 15 packet arrival at the RS clients. We confirmed
that the system successfully worked. RSs had calculated the
routes and delivered it to the ASBRs in the PoPs. Route
information had been retrieved by DHT process among the RS
clients in a PoP. It sent average 3.0 findV ALUEandNODE
RPCs within average 4.8 msec for the route retrieval for
a packet forwarding. Some other measurement results are
shown in Table. III. Nm, Tavg and Tprepresent the number
of messages sent, average and the 99% percentile for the time
needed for each task, respectively. Messages include JOIN ,
findNODE, STORE, and findV ALUEandNODE.

TABLE III
MEASUREMENT RESULTS

Nm Tavg (sec) Tp

Join DHT 3.40 1.005 4.007
RS to client route delivery 7.95 0.039 0.080
Route retrieval 3.00 0.005 0.005

V. RELATED WORKS

For many years new architecture of the Internet has been
discussed in order to liberate the routers from the load for
interdomain routing. Concept of Locator-ID separation [12]
aims to achieve the reduction of routing table size by separat-
ing the numbering space for locators from that for the end host
IDs, and let the routing done only with the locator addresses.
The difficulty of this approach lies in its deployment in the
Internet. We cannot benefit from this approach until a large
number of ASs at the border of the Internet adopt the solution.
In contrast, our proposal gives scalability benefits immediately
to the ISP even the deployment is limited to its AS. We believe
this aspect is important considering the realistic, incremental
deployment of a new Internet architecture. Compact routing
[13] also is a solution for reducing the routing table size by
aggregeating routes. This concept has a difficulty in terms of

routing performance since it makes use of routes that are not
necessarily the shortest path to the destination. RCP[14] is
an interdomain routing architecture that lets one centralized
node selects and provides the route for all the routers in an
AS. This solution releases the routers from maintaining RIBs.
Route selection at the route servers in our proposal resembles
this approach, but it is different in terms of scalability that our
route servers work distributedly in the AS. Our proposal of
the distributed routing table is shown in [7], which addresses
the protocol description, analytical evaluations that includes
comparison between one of the major methods in compact
routing. Based on this proposal, we have shown the design of
a prorotype implementation in this paper.

VI. CONCLUSION
In this paper, we have shown a prototype design for scalable

support of Internet routes in the routers that compose a single
service provider network. We have shown how we designed the
system in order to enable the features that our proposed proto-
col gives. Furthermore, we have shown a sample deployment
using our prototype. For further work, we aim to evaluate our
proposal using this prototype in a realistic condition emulating
an AS in the Internet. Our future work using the prototype
which we present in this paper will focus on the evaluation
regarding the number of messages and time to retrieve a route
via DHT. This is expected to be done by modeling a service
provider network with a realistic topology, collected Internet
routes and packet traces.

REFERENCES
[1] “Future INternet Design (FIND),” http://www.nsf.gov/pubs/2007/

nsf07507/nsf07507.htm.
[2] “AKARI - Architecture Design Project for New Generation Network,”

http://akari-project.nict.go.jp.
[3] “Route Views Project,” http://www.routeviews.org/.
[4] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB workshop on

routing and addressing,” September 2007, RFC 4984.
[5] G. Huston and G. Armitage, “Projecting future IPv4 router requirements

from trends in dynamic BGP behaviour,” in ATNAC, Australia, Decem-
ber 2006.

[6] A. Feldmann, H. Kong, O. Maennel, and A. Tudor, “Measuring BGP
pass-through times,” in PAM, 2004, pp. 267–277.

[7] C. Pelsser, A. Masuda, and K. Shiomoto, “Scalable Support of Interdo-
main Routes in a Single AS,” in IEEE GLOBECOM 2009, 2009.

[8] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of IP restoration in a tier 1 backbone,” IEEE Network, vol. 18, no. 2,
pp. 13–19, Mar-Apr 2004.

[9] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in International workshop on
Peer-To-Peer Systems (IPTPS 2002), March 2002.

[10] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability of
popular destinations,” in Proc. Internet Measurement Workshop, 2002.

[11] R. Chandra and J. Scudder, “Capabilities advertisement with BGP-4,”
November 2002, RFC 3392.

[12] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/ID Separation
Protocol (LISP),” March 2009, internet draft, draft-farinacci-lisp-12.txt,
work in progress.

[13] D. Krioukov, k. c. claffy, K. Fall, and A. Brady, “On compact routing
for the internet,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 3, pp.
41–52, 2007.

[14] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and K. van der
Merwe, “The Case for Separating Routing from Routers,” in ACM
SIGCOMM Workshop on Future Directions in Network Architecture
(FDNA), Portland, OR, September 2004.

masuda

masuda

masuda

masuda

masuda

masuda

