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Abstract—Companies like Netflix increasingly use
the cloud to deploy their business processes. Those pro-
cesses often involve partnerships with other companies,
and can be modeled as workflows where the owner of
the data at risk interacts with contractors to realize a
sequence of tasks on the data to be secured.

In practice, access control is an essential building
block to deploy these secured workflows. This com-
ponent is generally managed by administrators using
high-level policies meant to represent the requirements
and restrictions put on the workflow. Handling access
control with a high-level scheme comes with the benefit
of separating the problem of specification, i.e. defining
the desired behavior of the system, from the problem
of implementation, i.e. enforcing this desired behavior.
However, translating such high-level policies into a
deployed implementation can be error-prone.

Even though semi-automatic and automatic tools
have been proposed to assist this translation, policy
verification remains highly challenging in practice. In
this paper, our aim is to define and propose struc-
tures assisting the checking and correction of poten-
tial errors introduced on the ground due to a faulty
translation or corrupted deployments. In particular,
we investigate structures with formal foundations able
to naturally model policies. Metagraphs, a generalized
graph theoretic structure, fulfill those requirements:
their usage enables to compare high-level policies to
their implementation. In practice, we consider Rego, a
language used by companies like Netflix and Plex for
their release process, as a valuable representative of
most common policy languages. We propose a suite of
tools transforming and checking policies as metagraphs,
and use them in a global framework to show how
policy verification can be achieved with such structures.
Finally, we evaluate the performance of our verification
method.

Index Terms—policy verification, metagraphs, policy
modeling, rego, access control, authorization

I. Introduction
Authorization is a key aspect of security, regulating the

interactions taking place in a given system. For example,
Netflix will often interact with their partners for some
tasks, e.g. content ingestion [1], [2]. Since the systems
to be secured by authorization can be highly complex,
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administrators often rely on policy-based management of
authorization. Policies define the desired behavior of a
system from a high-level perspective. Hence, this form of
management allows to separate the problem of specifica-
tion, i.e. defining the desired system behavior, from the
problem of implementation, that is the enforcement of the
desired system behavior.

Research on this topic mainly focuses on three areas:
policy analysis, policy refinement and policy verification.
On the one hand, policy analysis deals with the fulfill-
ment of specific properties by a set of policies [3], e.g.
detecting when two or more policies are conflicting. On the
other hand, policy refinement handles the translation
from high-level policies into low-level configurations [4].
Depending on how this task is realized, the translation can
lead to incorrect and/or non-optimized policy implemen-
tations; it can affect performance or even put the system
at risk by introducing security flaws. According to the
Verizon Data Breach Investigations Report, errors were
causal events in 22% of data breaches [5]. As the risk
of error increases when refinement is performed by hand,
automatic or semi-automatic assisting tools have emerged
to help administrators better translate their policies [6]–
[8].

In this paper, we deal with policy verification, i.e., we
check whether the deployment of policies actually meets
their high-level specification. Policy verification plays an
important role since assisting tools are not free of errors,
and deployment specificities can lead the policy to be-
come erroneous. An erroneous policy can lead attackers
to view files they were not authorized to see [9], access
paid content free of charge [10] and even changing access
rights [11] or deleting content [12]. There exists only few
works on policy verification [13], [14], when compared
to the large body of work dealing with policy analysis,
and none of them uses metagraphs. We propose to model
policies with a generic yet rich structure: metagraphs. We
use its formal foundations to verify whether the actual
deployment of a policy (i.e., its implementation) matches
its initial specification. We rely on this structure since,
by design, it provides means to locate conflicts and avoid
redundancy [15]. Metagraphs provide more fine-grained
verification process than with other structures like usual
graphs. To the best of our knowledge, metagraphs belong978-1-6654-4005-9/21/$31.00 ©2021 European Union



to the rare appropriate structures able to naturally model
access control policies. Metagraphs also scale well with
very large policies, since we use their formal foundations to
perform the verification. Transformations such projections
or context metagraphs [16] can be used to help with the
visualization of very large policies.

The contributions of our paper are as follows:
1) We are the first to use metagraphs to perform the

verification of access control policies. We argue they
represent one of the most appropriate form of policy
modeling enabling refinement and verification. We
also show how this verification allows us to pinpoint
errors in the policy.

2) We propose a suite of translation tools enabling
policy verification. More specifically, we introduce
how to perform policy verification on a workflow-like
policy specification. We rely on a policy implementa-
tion based on Rego, a high-level declarative language
built for expressing complex policies.

3) Finally, we conduct a thorough performance evalu-
ation. We verify that deployed policies match their
specification in a very reasonable time, even for large
workflows having a substantial number of rules.

II. Related Works
There exist several pieces of works on policy analy-

sis, refinement and verification in the literature. Policy
analysis mainly deals with policy evaluation and anomaly
analysis: checking for errors like incorrect policy speci-
fications, conflicts and sub-optimizations affecting either
a single policy or a set of policies [3] being the primary
research topic. Works in this area use different techniques
to achieve this goal, such as model checking [17], [18],
binary decision diagrams [19], graph theory [20], Deter-
ministic Finite State Automata (DFSA) [21], First Order
Logic (FOL) [22], geometrical models [23], answer set
programming [24], petri nets [25] and metagraphs [15].
Policy evaluation instead deals with checking whether a
request is satisfied by a set of policies. It is typically used
to verify the effective impact of modifying a policy. Works
that deal with analyzing the impact of changes in a policy
usually model those policies and then analyze the obtained
representation for effective impact [26], [27].

Policy verification, the subject of this paper, deals with
checking whether a policy is correctly enforced in a system.
On the one hand, Hughes and Bultan [13] as well as
Bera et al. [14] propose automatic verification of access
control policies against a set of properties. Verification
is achieved by translating the properties into a boolean
satisfiability problem and using a SAT solver, whereas
we use metagraphs which come with a useful visual
representation of the policies. On the other hand, even
though metagraphs have emerged as one of the most
suited tool for representing and reasoning about policies,
they are still underused with only few existing works in
the literature [15], [16], [28]–[30]. Basu and Blanning [16]

compiled all the research on metagraphs up until 2007 in a
book, which is the reference for general metagraph theory
and applications. Ranathunga et al. [28] defined a toolkit
in python to manipulate metagraphs. Hamza et al. [29],
[30] used metagraphs to model policies in IoT devices
to generate and validate Manufacture Usage Descriptions
(MUD) profiles – it can be used to define the access
control model and network functionality these devices
require to properly function. They also check compliance
of those MUD profiles with different levels of security
policies, to determine where those devices are safe to
be deployed. They do not verify policy implementations
against their specifications. Closer to our contribution,
Ranathunga et al. [15] use metagraphs to model network
policies for distributed firewalls. In particular, they use
specific metagraph properties to detect redundancies and
conflicts in those policies. Contrary to our work, they do
not verify deployed policies against specifications.

After introducing metagraphs (Sec. III), we show how
we use them to perform policy verification (Sec. IV).
We evaluate our approach (Sec. V), and finally conclude
(Sec. VI).

III. From Graphs to MetaGraphs

A metagraph is a generalized graph theoretic structure
like directed hypergraphs, which is defined as a collection
of directed set-to-set mappings. Each set (containing sub-
sets or elements) in the metagraph is a vertex, and directed
edges represent the relationship between sets. More for-
mally, a metagraph can be defined as follows:

Definition 1 (Metagraph). A metagraph S = 〈X,E〉 is a
graphical construct specified by a generating set X and a set
of edges E defined on the generating set. A generating set
is a set of elements X = {x1, x2, ..., xn}, which represent
variables of interest. An edge e is a pair e = 〈Ve,We〉 ∈ E
consisting of two sets, an invertex Ve ⊂ X and an outvertex
We ⊂ X.

Fig. 1 illustrates a conditional metagraph. Conditional
metagraphs are metagraphs augmented by propositions,
i.e. statements that can either be true or false. A proposi-
tion attached to an edge must be true in order for the edge
to be used in a path. Each edge may contain zero or more
propositions and each proposition may be used in multiple
edges. Overall, Fig. 1 represents the necessary tasks for
employees to perform a bank transfer. Edges (e1, e2, e3)
relate sets of employees (u1, u2) and tasks (create form,
fill form, review form, transfer money). They con-
tain an arbitrary number of propositions, e.g. tenure > 2
for e1. Using an edge depends on the evaluation of its
propositions, e.g. both employees can perform the oper-
ations create form and fill form via e1 provided they
have more than two years of experience. In Fig. 2, we
model a workflow containing temporal constraints as a
conditional metagraph.
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Fig. 1. A simple example of conditional metagraph to model the
following question: what are the necessary tasks for employees
to perform a bank transfer?
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Fig. 2. Movie workflow: special effects apply before color tuning and sound
mastering. HDR is set up last.

The notion of simple path, i.e. a sequence of edges
〈e1, e2, ..., en〉 from an element x to an element y where
x ∈ invertex(e1), y ∈ outvertex(en) and for all ei,
i = 1, ..., n − 1, outvertex(ei) ∩ invertex(ei+1) 6= ∅,
does not describe all the connectivity properties exist-
ing in a metagraph. For example, in Fig. 1, there are
two simple paths from {u1, u2} to {transfer money},
(e1, e3) and (e2, e3). However, none of them can perform
transfer money as they respectively do not reach either
review form or fill form, which are both necessary
to perform transfer money. Using the set consisting of
all three edges (e1, e2, e3) is necessary (and sufficient) to
perform transfer money, but it is not a simple path:
there does not exist a simple sequence of edges consisting
of these three. Such a set of edges 〈e1, e2, e3〉 is called a
metapath [16].

Reachability between the source and target sets in a
metagraph is defined by the existence of (valid) metapaths
between the two. Additionally, metapaths have a domi-
nance property which can be used to determine redundant
components (edges or elements) [15]. Once identified, those
components can be safely removed from the policies. A
metapath is input-dominant if no proper subset of its
source is also a metapath to its target, edge-dominant if
no proper subset of its edges is also a metapath to its
target, and dominant if it is both input-dominant and
edge-dominant [16].

IV. Policy Verification Using Metagraphs
By modeling the high-level policy specification as well as

the translated policy implementation as two metagraphs,
we can compare both in order to track (distributed) de-
ployment errors. When specification and implementation
metagraphs match, the policy implementation has been
correctly translated from the policy specification. If they
do not match, the metagraphs are not equivalent: errors
occurred during the refinement and/or deployment. Fig. 3
summarizes our approach.

For our purposes and evaluations, we consider the verifi-
cation of policies enforcing workflows. For instance, in the
post-production stage of making a movie, the owner of the
data at risk wants to employ other companies to edit its
video and audio components; more specifically, the owner

may want to add special effects (VFX), tune colors, set up
High Dynamic Range (HDR) and master the audio. The
intent of the owner can be modeled under the form of a
workflow, as depicted in Fig. 2. Propositions on the edges
constrain the communications. For example, C1 can only
send data to C2 and C3 if the communication is a POST
request, and either the tenure of the user is greater than
10, or the request happens between 8 AM and 5 PM.

This form of policy specification can be generically
expressed as a list of rules: each describing an edge of the
metagraph, as a triplet of the form of 〈source, destination,
policy〉. To implement those policies, we consider Rego, a
high-level declarative language built for expressing com-
plex policies. Once we have the policy specification and
the implementation, we transform both into conditional
metagraphs. For this, we develop three generic policy
translators: from specification (raw) to specification meta-
graph, from specification to implementation (Rego), and
from implementation to implementation metagraph.

Policy specification into a conditional metagraph – as
denoted 2 in Fig. 3: We need to define the variables
set, the propositions set and the edge set defining the
conditional metagraph. To this end, we parse the triplets
of the policy specification file. A proposition attached to an
edge must be true for the edge to be used in a metapath,
thus, an OR in a proposition can be viewed as separate
edges from the same source to the same destination, with
each part of the OR becoming a sub-proposition attached
to one of the newly created edges. Likewise, the AND in a
proposition means both parts need to be true in order for
the edge to be used, so the proposition can’t be separated.

Policy implementation (i.e. Rego) into a conditional
metagraph – 4 in Fig. 3: We use ANTLR4, Another Tool
for Language Recognition, which is a parser generator
used for translating structured files. After constructing our
lexer rules and parser grammar for Rego, we were able to
generate the Abstract Syntax Tree (AST) for any Rego
policy file.

Comparing metagraphs – see 5 : To compare meta-
graphs, we tag edges in one metagraph upon a match
with edges in the other metagraph. Non tagged edges
correspond to errors/mistakes in the implemented policies,
singled out by our comparison.
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Fig. 4. Execution time of our matching algorithm according to several
different parameters used to generate our access control policies.
Values for 10-set and 20-set omitted for brevity.

V. Performance analysis

To evaluate our policy verification algorithm, we mea-
sure the time required to compare the specification and
implementation metagraphs.

Methodology: To obtain generally representative re-
sults, we chose to generate random workflows for the access
control policy specifications (instead of relying on few
small real cases) based on the following varying parame-
ters. Values for those parameters were chosen for the sizes
of the generated policies to be in line with papers that
model real-world policies [15], [31].

• Size of the workflow, i.e., number of elements in
the generating set: 10, 20, 30, 50 or 100.

• Policy size, i.e., number of conditional propositions
on each edge for the policy: 2 or 4.

• Error rate, i.e., fraction of errors in propositions of
the metagraph. A value of 0.4 means that 40% of the
elements/propositions of the metagraph are tampered
with; we consider the following error rates: 0.0, 0.2
and 0.4.

Overall, we obtain 300 different policy specifications
and 27,000 policy implementations (300 specifications, 3
error rates, 30 repetitions). After generating the policy
implementations, we translate those into metagraphs to
finally perform the comparison.

Evaluation: For each of the 27,000 scenarios, we
measure the cumulative time of both sorting and matching
for 30 runs, ending up with a total of 810,000 measures. We
remove outliers due to peak machine load (Z-score superior
to three): 9367 values out of 810000 (1.16%). We ran our
measurements on commodity hardware with an Intel Core
CPU 3.5-GHz, 16GB of RAM.

Fig. 4 shows that the error rate produces a negligible
effect on the time required for the comparison, whereas
the computing time increases with the number of elements
in the generating set (as well as with the policy size). The
main complexity of our metagraph comparison is inherent
to edge sorting: O(m·log(m)), with m the number of edges.
Using an OLS regression, we confirm that the number of
edges (β = 0.0025; p < 0.001) is a significant predictor.
The overall model fit is: R2

adj = 0.868, with the post hoc
power analysis indicating a power greater than .999.

In summary, we argue that our refinement/deployment
error detection technique can be efficiently implemented
as long as the number of propositions of the policy is
reasonable. The complete results and code are publicly
available1.

VI. Conclusion
Some of the largest cloud consumers use the cloud

to deploy their workflows and enforce their processes
using access control policies. In this paper, we detailed
to what extent metagraphs are appropriate structures
to naturally model access control policies. Their formal
and graphical foundations guide the reasoning to manipu-
late such policies and provide means to detect conflicts
and mitigate redundancies. This structure is a suitable
modeling tool; while it enables policy analysis, we have
proposed here to use them for a practical verification of the
deployed access control policy regarding its specification.
Our proposal compares the initial metagraph specification
to its deployed counterpart and reveals inconsistencies.
We evaluate the complexity of our simple but original
approach to show its scalability.

1See https://zenodo.org/record/4426675.
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