Improvements to Core Stateless Fair Queueing*

Cristel Pelsser! and Stefaan De Cnodder?

1 University of Namur, Belgium,
cpe@infonet.fundp.ac.be
2 Alcatel, Belgium,
stefaan.de_cnodder@alcatel.be

Abstract. Core Stateless Fair Queueing (CSFQ) is a scalable mecha-
nism to provide per-flow fairness in high-speed networks in that it does
not need to maintain per-flow state in the core routers. This is possi-
ble because the state for each flow is encoded as special labels inside
each packet. In this paper, we propose and evaluate by simulations two
improvements to CSFQ. First, we show that CSFQ does not provide a
fair service when some links are not congested. Our first improvement
solves this issue. Second, we propose an algorithm to allow CSFQ to
provide a service with a minimum guaranteed bandwidth and evaluate
its performance with TCP traffic.

1 Introduction

The Internet was initially designed to provide a best-effort service. During the
last ten years, two architectures have been proposed to allow the Internet to sup-
port other types of services. The Integrated Services architecture (IntServ) [2]
aims at providing end-to-end guarantees to individual flows. The Differentiated
Services architecture (DiffServ) [I] aims at providing several grades of service
to different aggregated flows. Although these two architectures differ in most
aspects, the routers supporting these advanced services will have to rely on clas-
sifiers, buffer acceptance algorithms, markers, traffic conditioners and schedulers
to provide the required service differentiation or guarantees. The performance
and the complexity of these mechanisms is a key issue to be considered when
designing high speed routers.

From an application point of view, the IntServ architecture provides the best
service since the guarantees are associated with each individual flow. However,
this often forces the routers to perform a complex classification and to maintain
some state for each individual flow. This severely limits the scalability of the
IntServ architecture and its capability of being used in high speed networks.
The DiffServ architecture on the other hand started from the assumption that
it must be implementable with today’s equipment. For this, DiffServ traded the
per-flow guarantees in favor of per traffic aggregate guarantees. This improves
the scalability of DiffServ. In DiffServ, a network is composed of two types
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of routers : edge routers and core routers. The edge routers typically serve a
small number of customers with a few links. Their role is to classify the packets
received from the customers and mark each packet with the class of service that
they should receive. By putting the complexity at the edge routers this way,
DiffServ is much more scalable and performant than IntServ but it lowers the
quality of the service from the application point of view.

Inside high-speed networks, the performance of the routers is a key issue.
Congestion should not occur at the routers. In other words, the routers should
not be bottlenecks. They should be able to use all the bandwidth available on
the links to which they are connected. As a consequence, the mechanisms that
aim to provide per-flow guarantees should be able to work at a high pace, to be
usable in high-speed networks. Therefore, Dynamic Packet State (DPS) [9] [1T] is
an interesting solution to provide per-flow service differentiation in a performant
and scalable manner. DPS removes the requirement to maintain per-flow state
by encoding the state for each flow as labels inside the IP packets. By this mean,
it also removes the need for packet classification at each node. With DPS, as with
DiffServ, there are edge and core routers. The edge routers classify the packets
received from the customers and mark each packet with the per-flow state re-
quired by downstream routers to provide the required fairness or guarantees.
Edge and core routers then process the packets according to these marking.
Since all the per-flow state information is included inside each IP packet, the
core routers do not need to maintain per-flow state and to perform classification
; their complexity is reduced. To respect transparency, when a packet reaches
the edge of the network, the packet state introduced by the ingress edge router
is removed. Several mechanisms relying on the DPS principle or on the Differ-
entiated Services Code Point (DSCP) have been proposed and analyzed in the
literature [3] [4][6], [7] 9], 10} [IT] [12] for the provision of a large variety of services in
high-speed networks. In this paper, we focus exclusively on Core Stateless Fair
Queueing (CSFQ) due to space limitations. A more detailed overview of these
mechanisms may be found in [§].

This paper is organized as follows. First, in Sect. 2, we provide a detailed
description of CSFQ as it was proposed in [I0]. Then, in Sect. 3, we show that
CSFQ does not provide fairness when some links are non congested. We pro-
pose and evaluate a solution to this problem that occurs on many links inside
high-speed networks. In Sect. 4, we show how to extend the CSFQ algorithm to
provide a minimum guaranteed bandwidth to each flow and evaluate the perfor-
mance of this extension with TCP traffic.

2 CSFQ Algorithm

By fairness we mean, in this paper, that all flows sharing a link, and having
packets dropped at the router upstream of the link, should get the same amount
of bandwidth. Such flows are said to be bottlenecked on the link. All other flows
on the link get a smaller amount of bandwidth. The amount of bandwidth that

! For information concerning the storage of the label in the packets refer to [0, [I1].
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is allocated, in a fair situation, to a flow bottlenecked on a link is called the fair
share of the link. In addition to the fair provision of bandwidth, this paper deals
with the support of minimum bandwidth guarantees, allowing certain flows to
use a portion of bandwidth in all case, in addition to their fair allocation.

CSFQ [10] aims at distributing bandwidth fairly between the flows sharing
the network. It also allows to associate a weight to the different flows and tries
to distribute the bandwidth in proportion to those weights. CSFQ is based on
DPS. Since it does not need to perform classification, it is suitable for high-speed
networks. The complexity is put into the edge routers, that are connected only
to a few links, leaving the core routers with a lower complexity.

On packet p arrival, the edge routers perform classification. They determine
the flow to which the packet belongs, flow;. The state of this flow is then used to
compute the arrival rate of the flow, AR;. The arrival rate of flow; is determined
for any i by

L
ARi,new = (1 - 6_%)T + 6_%ARi,old , (1)

where AR; o1q is the previous estimation of the arrival rate of flow; stored in
the flow state, K is a constant, L is the length of the current packet p and T
is the time elapsed between the arrival of the previous packet of flow; and the
current packet arrival. This is the formula used by the estimate_rate function
in Fig. [l The new arrival rate estimation of flow; (AR; new) is used to label the
current packet p belonging to flow;.

When a packet p arrives, the edge and core routers compute the drop prob-
ability of the packet using

FS

Paron = 01— —2), 2
arop = max( olabel) 2)

where the fair share, F'S, has been estimated at the previous packet arrival and

p-label is the label of the current packet. It can be deduced that, if p.label > F'S

On receiving packet p
if (edge router)
i = classify(p);
p-label = estimate_rate(AR;,p);
Pyrop = max(0,1-FS/p.label);
if (Pirop > unifrand(0,1))
FS = estimate_FS(p,1);
drop(p);
else
if (Parop > 0)
p.label = FS; /* relabel p*/
FS = estimate_FS(p,0);
enqueue (p) ;

Fig. 1. CSFQ pseudo-code
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then Payop > 0. And, when p.label < F'S, we have pf—ﬁl > 1. Tt follows that
Parop = 0.

Then, if the drop probability Payop, of the packet is greater than a random
number, the packet is in excess of the fair share. A new estimation of the fair
share is done and the packet is dropped. Otherwise, Pyyop is lower than the
random number and the packet belongs to the fair allocation. If the drop proba-
bility is above zero, the packet is relabeled with the fair share, which should be
an approximation of the rate of flow; on the output link. Then, independently
of the value of Py,op, the fair share is estimated. And, after the estimation, the
packet is stored in the queue provided that it is not full. Figure [l shows the
pseudo-code of the CSFQ algorithm.

The estimation of the fair share is shown in Fig.[2l First of all, the arrival rate
of the aggregate traffic, AR, at the router and the rate at which the packets are
forwarded to the FIFO queue, F'R, are estimated using the exponential averaging
(M. The link is considered congested if the arrival rate is larger than the link
rate (BW) and congested otherwise.

When the link becomes congested, the variable congested is set and, the
beginning of the time window, start_time, is set to the current time. If the link
remains congested for K. seconds, the fair share is updated according to

estimate_FS(p,dropped)
estimate_rate(AR,p); /* estimate arrival rate */
if (dropped == FALSE)
estimate_rate(FR,p);
if (AR>BW)
if (congested == FALSE)
congested = TRUE;
start_time = current_time;
else
if (current_time > start_time + K.);
FS = FS * BW/FR;
start_time = current_time;
else /* AR < BW x/
if (congested == TRUE)
congested = FALSE;
start_time = current_time;
temp_FS = 0; /* Used to compute new FS */
else
if (current_time < start_time + K.)
temp_FS = max(temp_FS,p.label);

else
FS = temp_FS;
start_time = current_time;
temp_FS = 0;
return FS;

Fig. 2. Fair share estimation pseudo-code
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FSnew - FSOId% . (3)
An explanation of ([B)) is given in [I0]. Intuitively, it can be seen that when the
forwarding rate estimation is above the link rate, the fair share estimation will
decrease leading to less packets being transmitted when the number of flows
stays constant or decreases. Otherwise, the fair share estimation increases.

The link is considered uncongested when the arrival rate is below the link
rate. If the link was congested at the previous estimation but is now uncongested,
the variable congested is set to false and temp_FS is set to zero. The variable
temp_FS is used to compute the maximum of the labels carried by the packets
arriving during an interval of length K. and starting at start_time.

It can be noticed that, when the link isn’t a bottleneck, there is no need to
drop packets from any flow. In this case, the fair share is set to the arrival rate of
the flow with the highest bandwidth. By setting the fair share at the maximum
flow rate, no packets will be dropped because, according to (@), the dropping
probability will be zero for each flow.

The fair share F'S is estimated each time the link is congested for at least
K seconds. It is also computed when the link is uncongested during the last K.
seconds. We can already see that if the link passes from uncongested to congested
and vice-versa too often (i.e. in less than K seconds) the fair share will not be
reestimated.

3 Improvement to CSFQ

3.1 Uncongested Network Problem

It has to be noticed that in CSFQ (Fig. ), as exposed in [10], when there is no
congestion, the fair share is set to the maximum of the packets’ labels passing
through the node during a fixed interval, called a window size, of length K..
But, during such intervals, sometimes not all flows have packets arriving at a
node. Because TCP is bursty, the rate of a TCP flow may be high even if no
packets are sent during certain periods. Consequently, the fair share might be
smaller than the label of certain packets. As a result, the drop probability of
certain packets could be higher than zero. Some packets may be dropped even
if the link on which they have to be transmitted is not congested.

Another problem with the estimation of the fair share as the maximum of the
labels, in uncongested mode, is that the flows have difficulties to increase their
sending rate. For example, if the maximum arrival rate among the flows at a
link increases, and the new arrival rate of the flow is not yet incorporated in the
fair share estimation, some packets of the flow are dropped. Again, we observe
dropping of packets during an uncongested period. But, during uncongested
periods, TCP always tries to increase its sending rate. If packets of the TCP
flows are dropped, their sending rate will decrease because dropped packets are
interpreted as a congestion indication by TCP. Therefore, this estimation of the
fair share done by CSFQ for uncongested links can be seen as unfriendly toward
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TCP flows. Additionally, forcing the flows to decrease their sending rate leads
to an under-utilization of the resources.

We can also imagine the case where a network node does not have any packet
to send on a particular output link. Then, the estimation of the arrival rate
should be around 0 bps and the link is considered as uncongested. Because no
packets arrive, the fair share is estimated to 0 bps. And, when packets will
arrive for this link, they will all be dropped. If the link stays uncongested during
a window size, the fair share estimation will increase to the maximum of the
labels that passed during the last window size period but if the link becomes
congested before this update, the fair share estimation will remain zero according

to [@).

3.2 Proposed Solution

To avoid the dropping of packets when there is no congestion (Sect. BIl), we
propose to estimate the fair share on the entire period that the network is un-
congested, instead of during K. seconds. And, the fair share is still updated
every K. seconds. This means that the last estimation of the fair share is taken
into account in the new estimation. Instead of computing the maximum starting
from 0 at the beginning of the K. windows, the maximum is computed starting
from the previous fair share estimation. In other words, every K. seconds an
estimation is made over the last K. seconds, and the final estimation is set to
the maximum of the current estimation and the new maximum, calculated over
the last period. Figure B] shows the pseudo code of the fair share estimation in
our Modified version of Core Stateless Fair Queueing (MCSFQ). This requires
only changes in the non congested case of the fair share estimation.

The solution proposed is interesting because, when the link becomes uncon-
gested, it can be considered that the right fair share has been found. The new
fair share should not be lower than the fair share used when there was conges-
tion because the arrival rate decreased, so, less packets have to be dropped. It
is logical that the fair share should be the maximum of the fair share at the
last congestion update and the packet’s labels that passed. When the link stays
uncongested, the temporary variable is not reset because all packets can be for-
warded. When resetting it, like in the proposal made in [I0], if the labels of the
packets that pass during a period of a window size length are strictly lower than
the maximum of the packets’ labels passed during the previous period, the fair
share decreases. But, when there is no congestion, either each flow has already
reached its fair share or the flows are not using all network resources. There is
no need to limit the use of these resources.

Now, during uncongested periods, the fair share is estimated by the maximum
of the packets’ labels, received since the end of the congestion and of the last
fair share update before the uncongested period. It follows that the fair share
estimation is higher with MCSFQ than with CSFQ, allowing to forward packets
at a higher rate. Additionally, TCP will more easily be able to increase its sending
rate. When TCP increases its sending rate, the first packets with a high label
may be dropped but their labels are taken into account in the next fair share
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estimate_FS(p,dropped)
estimate_rate(AR,p); /* estimate arrival rate */
if (dropped == FALSE)
estimate_rate(FR,p);
if (AR>BW)
if (congested == FALSE)
congested = TRUE;
start_time = current_time;
else
if (current_time > start_time + K.);
FS = FS * BW/FR;
start_time = current_time;
else /* AR < BW */
if (congested == TRUE)
congested = FALSE;
start_time = current_time;
temp_FS = FS; /* Used to compute new FS */
else
if (current_time < start_time + K.)
temp_FS = max(temp_FS,p.label);
else
FS = temp_FS;
start_time = current_time;
return FS;

Fig. 3. MCSFQ fair share estimation : pseudo-code

updates. It follows that TCP is able to send at a higher rate than before once
its window size has increased again, when the network stays uncongested.

It can be noticed that, when the link becomes congested for a window size
period, the fair share will be updated according to ([@). If the fair share is too
high when the link becomes congested, the forwarding rate measured during the
first window period will be higher than the link rate and therefore, the next
estimation of the fair share will be smaller.

3.3 Simulations

In each of the scenarios used for the simulationsﬁ, there is one flow per source.
These flows may be an aggregate of TCP or UDP flows. The data packets are
sent from source to destination. The data packets all go in the same direction,
from the left to the right of the networks. And, the acknowledgments follow the
reverse path. Two way traffic, i.e. traffic with a mix of acknowledgments and
data packets, is not considered in this paper. Because the acknowledgments are
much smaller and less frequent than the data packets, there is never congestion
in the reverse path. In the simulations, CSFQ (MCSFQ) is not used on the path
of the acknowledgments. Only the data path is influenced by CSFQ (MCSFQ).

2 OPNET is the tool used to perform the simulations.
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The bandwidths that are indicated on the Fig. Bland Fig.[§ are the bandwidths
for the data path. For the other direction, the link rates are set large enough
such that there is never congestion. The simulations are done with a threshold?]
of half the queue size, as recommended in [10]. And, the fair share is initialized
at 1 bpsH

3.4 Single Bottleneck Scenario

Although the single bottleneck scenario is simple, it already gives a good indi-
cation of the behavior of CSFQ (MCSFQ). It indicates whether or not CSFQ
(MCSFQ) is able to distribute the bandwidth in a fair way in simple networks.

In the single bottleneck scenario (Fig. ), there are four sources, an ingress
edge router, a core router and four destinations. All packets generated by one
source belong to the same flow, so there are four flows in total. All four flows
cross the two routers of the network. They first pass through the edge router
where they are multiplexed on a single link on which CSFQ (MCSFQ) allocates
the bandwidth. Then, the flows cross the core router. Finally they are distributed
on the links leading to their destinations. The edge router is the only possible
bottleneck. The core router performs CSFQ (MCSFQ) also, but the traffic in
excess to a fair bandwidth allocation should already have been dropped by the
first router.

In this scenario, the links from the users to the routers have a rate of 100
Mbps with a fixed propagation delay of 2.5 ms. The link joining the two routers
is of 3.75 Mbps with a fixed propagation delay of 10 ms in each direction.

3 The threshold is a value used in case the network is uncongested. The network is
supposed to stay that way until the queue occupancy gets above the threshold.

4 For a discussion concerning the importance of the value chosen for the fair share at
initialization refer to [§].
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3.5 Uncongested Network Problem

In this subsection, the results, obtained from simulations where the single bot-
tleneck network is uncongested or only congested at times, are presented. The
results are obtained from statistics taken at the edge router. All sources send
UDP packets except the first source that establishes one TCP connection. The
UDP flows are not responsible of a possible congestion. Their rate of 500 Kbps is
below one fourth of the link bandwidth. The total rate of the UDP flows will be
1.5 Mbps. That means that 2.25 Mbps are left to the TCP flow. In this situation,
the fair share estimation should be around 2.25 Mbps to allow the TCP flow to
make use of the bandwidth that is unused by the UDP flows. The window sizes,
K., are first set to 0.6 seconds.

The graphs on the left of Fig. [}l and Fig. [l show the throughput of each
flow at the edge router with CSFQ, MCSFQ and also with tail drop as the
only bandwidth allocation mechanism. The graphs on the right of these figures
illustrate the dropping rate of the flows with the same bandwidth distribution
mechanisms.

On Fig. [0l (left), it can be seen that the throughput of the UDP flows is
around 500 Kbps independently of the bandwidth allocation mechanism. On the
other hand, the throughput of the TCP flow varies depending on the bandwidth
distribution mechanism used. It is at its peak with tail drop, it is slightly lower
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with MCSFQ and it is the smallest with CSFQ. This means that the band-
width resources are better used with tail drop than with MCSFQ. And, even
less resources are used with CSFQ because the estimated fair share is higher
with MCSFQ than with CSFQ in uncongested periods. When tail drop is used,
UDP packets may be dropped as well as TCP packets (Fig. [, right), which is
not a fair behavior in this situation. With MCSFQ and CSFQ, the fair share
estimation is at least equal to the rate of the UDP flows. It follows that no UDP
packets are dropped (Fig. B right).

When the same simulations are performed with the window sizes set to 0.1
seconds [I0] instead of 0.6 seconds, the TCP flow is only able to use the same
portion of bandwidth as the one used by each UDP flow (Fig. [l left), if CSFQ is
used. Here, the window size is rather small and because TCP is bursty, its pack-
ets carry labels that are above the fair share estimation. Therefore, some TCP
packets are dropped even if there is no congestion on the link. On Fig. [ (right),
it can be seen that even UDP packets are dropped that way. This sensitivity of
CSFQ to the value of K, is annoying in practice. Our Modified CSFQ does not
suffer from this problem.

The TCP flow is not able to send above the throughput of the UDP flows
with CSFQ when the window size is small. As exposed in Sect. B, the TCP flow
has difficulties in increasing its sending rate. With a higher window size, the fair
share estimation is higher and there are more chances for the TCP flow to be
able to increase its sending rate. The MCSFQ bandwidth allocation mechanism
is not subject to such an important impact of the window size on the throughput
of the flows in uncongested networks (Sect. [3.2]).

On Fig.[d (right), it can be seen that packets from the UDP flows are dropped
with tail drop and CSFQ. We cannot say that this is a fair behavior because
these flows do not create the congestion. On the contrary, no UDP packet is
dropped by MCSFQ. The throughput of TCP is almost the same with MCSFQ
and tail drop. Here we can say that MCSFQ is the fairer bandwidth allocation
mechanism. We notice that MCSFQ is less sensitive to the window size than
CSFQ. If the window size is small the bandwidth is not shared fairly with CSFQ
as seen in Fig. Bl And, a high window size does also not provide fairness as shown
by []]. It is interesting to use a small value for K. to have an estimation of the
fair share that is more reactive to the changing traffic patterns. With a small
window size, the fair share is estimated more often.

4 Support of Minimum Guarantees

CSFQ was conceived to distribute the bandwidth fairly among the flows sharing
the network. It was thought to support flows that have different weights. The
bandwidth that each flow receives is then a proportion of its weight. But, CSFQ
was not meant, in [I0], to be able to provide minimum guarantees to some flows.
In this section, we show how to support minimum guaranteed flows in CSFQ
and MCSFQ.
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A small change in the labeling performed by the edge routers is enough to
support minimum throughput guarantees. Some modifications may be done to
the buffer acceptance module also [8]. But, these alterations are not manda-
tory to obtain satisfying results. In addition to the enhancement to CSFQ, an
admission control mechanismfi should be implemented for the support of mini-
mum guaranteed flows to ensure that there are enough resources to provide the
guarantees associated to the flows accepted in the network.

Our proposed modification to CSFQ is as follows. First of all, while labeling
packets, edge routers have to be able to determine which packets are part of the
guarantee associated to the packet’s flow and which packets will be treated as
best-effort. Bandwidth that is not part of any reservation has to be shared fairly
between the flows sending packets in excess of their traffic contract. Therefore,
CSFQ will only apply to excess packets. Edge routers will for that purpose mark
all guaranteed packets with a label of zero. This indicates that the packet doesn’t
use any portion of the bandwidth that has to be allocated fairly. But, in excess
packets will be marked with a label equal to the estimated excess rate of the flow,
as suggested in [6]. A similar principle is also used in [I2] for the provision of
minimum throughput guarantees by Stateless Prioritized Fair Queueing (SPFQ).

When a packet arrives at a core router, it is checked, to determine the packet’s
dropping probability (@), if its label is higher than the fair share of the output
link on which it has to be transmitted. When the packet is guaranteed, the fair
share will never be smaller than the label. The drop probability of the packet is
set equal to zero and the packet is not discarded, except if the queue is full and
tail drop occurs. But, the drop probabilities of excess packets might be greater
than zero.

The changes required to provide flows with minimum throughput guarantees
are shown in Fig.[d. In the pseudo code given in Fig.[7, guar_rate; is the amount
of bandwidth that is guaranteed to flow; and ER; is its excess rate. The marking
is performed based on a probabilistic determination of packets in and out of
the guarantees. A deterministic method may also be considered by using token
buckets. The excess rate of the flow is estimated according to (). Moreover, to
obtain a quicker convergence of the fair share estimation, we suggest to estimate
the amount of aggregate guarantee. This estimation requires modifications to the
fair share estimation function. We refer to the appendix of [§] for informations
concerning the implementation of this estimation as well as the deterministic
marking.

4.1 Generic Fairness Configuration (GFC) Scenario

The GFC scenario is used to show that flows can benefit from their guarantee
and their fair share altogether in networks where the fair share or the RTT
varies from one flow to another. This scenario is generic in that the fair share of
the links are different and the flows do not have the same path in the network,

5 Some admission control mechanisms that do not require per flow state are proposed
in [L1].
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On receiving packet p
if (edge router)
i = classify(p);
AR; = estimate_rate(AR;,p);
/* Determine if the packet is in or out of the guarantees */
Pous = max(0,1 - gﬂg%%%ﬁi);
/* Mark the packet */
if (Pout <= unifrand(0,1))
p.label = 0;
else
p-label = estimate_rate(ER;,p);
/* Edge and core routers */
if (p.label = 0) /* Packet in the guarantee */
Pdrop = 0;
else /* Packet out of the guarantee */
Pyrop = max(0,1-FS/p.label);
if (Pgrop > unifrand(0,1))
FS = estimate_FS(p,1);
drop(p);
else
if (Parop > 0)
p.label = FS; /* relabel p*/
FS = estimate_FS(p,0);
enqueue (p) ;

Fig. 7. Support of minimum guarantees : pseudo-code

leading to different RTTs. Dropping of packets happens in different nodes of the
network. Other scenarios and their corresponding simulation results are analysed
in [§].

In this scenario, there are 10 sources and 10 destinations (Fig.[). It follows
that 10 flows are considered. These are TCP flows composed of 15 TCP con-
nections each. The flows initiated by the B and X sources are congested on the
first link. The flows starting from the C sources are bottlenecked on the second
link. And, the flows from the A sources as well as from the Y sources are bottle-
necked on the third link. Sources X and Y act as background sources to create
congestion at the edge router and at the second core router respectively.

In the Generic Fairness Configuration (GFC) scenario, the first router is an
edge router. The second and third routers are classical core routers. They label
the packets coming from the sources directly connected to the router. Then, they
route the packets to the output links. Finally, the packets are dropped or ac-
cepted according to CSFQ), if the router is not connected directly to the packets’
destination. The last router is an egress edge router. It does not perform CSFQ.
The arriving packets are routed to an output link where they are transmitted to
their destination.

The propagation delays on the different links are fixed. The delays of prop-
agation on the links between two routers are 10 ms. Flows A-short, B-short,
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C-short, X-short and Y-short have a slightly smaller RTT than flows A-long,
B-long, C-long, X-long and Y-long. The propagation delay on the links between
a source, or destination, of a flow with a small RTT, and a router is 2.5 ms.
For flows A-long, B-long, C-long, X-long and Y-long the total delay occurred on
the access links has been increased by 32 ms by comparison to the flows with
a smaller RTT. This increase is distributed over the two access links crossed by
the flows. The window sizes are initialized to 0.6 seconds.

The amount of reserved bandwidth on the second link is 50% of the link rate,
in these simulations. Each flow benefits from the same throughput guarantee of
3 Mbps. The rate of link 2 is set to 36 Mbps. 50% of these 36 Mbps are reserved
for the TCP flows. There are still 18 Mbps left to share between the A, B and
C flows. The excess of the B flows should get 10% of these remaining 18 Mbps.
That means that the B flows should be able to use 1.8 Mbps of link 2 in excess of
their guarantee. Because there are four flows sharing link 1, the total excess rate
on this link should be 1.8 Mbps x 2 = 3.6 Mbps. The rate of link 1 will be set to
4 x 3 Mbps+3.6 Mbps = 15.6 Mbps. The excess of the B flows should therefore,
in average obtain, 1.8 Mbps on link 1. The B flows are not bottlenecked on the
second link. It follows that no packet from these flows should be dropped on
link 2. A similar reasoning leads to set the rate of the third link to 22.8 Mbps.
The deduction is based on the fact that the A flows should have 30% of the
bandwidth of link 2 in addition of their guarantees.

4.2 Support of Minimum Guarantees

The goodput of the flows is considered in Fig.[dl It is compared to the goodput
that the flows should have in an ideal situation where the guarantees are provided
and the excess bandwidth is shared fairly among the flows. The goodput of a
flow is the rate of its data transmission. Therefore, the goodput of a flow is
smaller than its throughput. In the goodput, packet headers and retransmissions
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Goodput of the flows with CSFQ (MCSFQ) and tail
drop
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Fig. 9. CSFQ and MCSFQ versus tail drop

of packets are not taken into account. The ideal goodput of Fig.[dis computed by
assuming that no packets are retransmitted which is usually not true. Therefore,
it is normal that the goodputs of the flows in the simulations performed with
CSFQ (MCSFQ) are slightly below their ideal goodput.

The flows get the same goodput with CSFQ and MCSFQ because the network
is always congested and therefore the fair share estimation is the same in both
mechanisms. The threshold has also no impact on the bandwidth distribution
for the same reason.

When tail drop is used alone, no guarantees are provided to the flows. From
Fig. [l it can be deduced that the A and B flows do not get as much bandwidth
as their guarantees. Additionally, the bandwidth is not distributed fairly among
the different flows. The RTT has a big impact on the goodput of the flows.

Figure[d indicates that the flows get their minimum goodput guarantees with
CSFQ (MCSFQ). Their excess goodput is above zero. Additionally, the unre-
served bandwidth is distributed approximately fairly among the different flows.
The flows bottlenecked on the same links approximately get the same amount
of bandwidth. The flows with a longer RTT don’t get much less bandwidth than
the other flows congested on the same link. And, the flows that occur drops
at different points in the network, A flows for example, are not too penalized
compared to flows that cross less nodes in the network.

5 Conclusion and Further Work

In this paper, we have proposed and evaluated two improvements to CSFQ. First,
we have analysed the estimation of the fair share in uncongested networks. We
have shown that the estimation used by CSFQ could cause unfairness and under-
utilization of the network resources. Consequently, we proposed an amelioration
to this estimation and validated this improvement by simulations. An important
advantage of our Modified CSFQ is that it is much less sensitive to the setting
of the window size (K.) than the original CSFQ.
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As a second contribution, we proposed a method to support minimum guar-
anteed flows with CSFQ and MCSFQ, by enhancing the packet labeling. We
have evaluated the performance of these modifications in a complex GFC sce-
nario with TCP traffic. We showed that with these modifications, the TCP flows
were able to benefit from their minimum guaranteed bandwidth. Additionally,
we noticed that, with CSFQ and MCSFQ, the unreserved bandwidth can be
shared fairly among the flows during congestion even when the flows have dif-
ferent RTTs and fair shares.

Several other improvements to CSFQ are possible. First, work should be done
to further improve the estimation of the fair share. During uncongested periods,
the fair share should be decreased periodically, or only when the congestion is
noticed, to avoid tail drops when the network starts to be congested, because
tail drops lead to unfair bandwidth distribution. During congestion, another es-
timation method could also be used. The applicability of the estimation used in
the Fair Allocation Derivative Estimation (FADE) [5] should be studied. Sec-
ond, when tail drops occur with CSFQ, the fair share is decreased by a small
percentage [10]. It could be interesting to avoid tail drops instead of reacting to
tail drops. The mechanism proposed in [4] could be used for this purpose [§].
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