This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Lossless Migrations of Link-State IGPs

Laurent Vanbever, Student Member, IEEE, Stefano Vissicchio, Cristel Pelsser, Pierre Francois, Member, IEEE,
and Olivier Bonaventure, Member, IEEE

Abstract—Network-wide migrations of a running network, such
as the replacement of a routing protocol or the modification of its
configuration, can improve the performance, scalability, manage-
ability, and security of the entire network. However, such migra-
tions are an important source of concerns for network operators as
the reconfiguration campaign can lead to long, service-disrupting
outages. In this paper, we propose a methodology that addresses
the problem of seamlessly modifying the configuration of link-state
Interior Gateway Protocols (IGPs). We illustrate the benefits of
our methodology by considering several migration scenarios, in-
cluding the addition and the removal of routing hierarchy in a run-
ning IGP, and the replacement of one IGP with another. We prove
that a strict operational ordering can guarantee that the migration
will not create any service outage. Although finding a safe ordering
is NP-complete, we describe techniques that efficiently find such
an ordering and evaluate them using several real-world and in-
ferred ISP topologies. Finally, we describe the implementation of a
provisioning system that automatically performs the migration by
pushing the configurations on the routers in the appropriate order
while monitoring the entire migration process.

Index Terms—Configuration, design guidelines, Interior
Gateway Protocol (IGP), migration, reconfiguration, summariza-
tion.

I. INTRODUCTION

MONG all network routing protocols, link-state Interior

Gateway Protocols (IGPs), like IS-IS [1] and OSPF [2],
play a critical role. An IGP enables end-to-end reachability be-
tween any pair of routers within the network of an autonomous
system (AS). Many other routing protocols, like BGP, LDP, or
PIM, rely on an IGP to work. As the network grows or when new
services have to be deployed, network operators often need to
perform large-scale IGP reconfigurations [3].

Migrating an IGP is a complex process since all the routers
have to be reconfigured in a proper manner. Restarting the net-
work with the new configurations does not work since most of
the networks carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running. Such

Manuscript received October 24, 2011; accepted January 22, 2012; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor Z. M. Mao. This work
was supported in part by Alcatel-Lucent. The work of L. Vanbever was sup-
ported by an FRIA scholarship. The work of S. Vissicchio was supported in
part by the MIUR PRIN Project ALGODEEP.

L. Vanbever and O. Bonaventure are with the Institute of Infor-
mation and Communication Technologies, Electronics and Applied
Mathematics (ICTEAM), Université catholique de Louvain, Lou-
vain-la-Neuve 1348, Belgium (e-mail: laurent.vanbever@uclouvain.be;
Olivier.Bonaventure@uclouvain.be).

S. Vissicchio is with the Dipartimento di Informatica ¢ Automazione, Uni-
versita Roma Tre, Rome 00146, Italy (e-mail: vissicch@dia.uniroma3.it).

C. Pelsser is with Innovation Institute, Internet Initiative Japan (I1J), Tokyo
101-0051, Japan (e-mail: cristel@iij.ad.jp).

P. Francois is with the IMDEA Institute, Madrid 28918, Spain (e-mail: pierre.
francois@imdea.org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2012.2190767

operations can lead to significant traffic losses if they are not
handled with care. Unfortunately, network operators typically
lack appropriate tools and techniques to seamlessly perform
large, highly distributed changes to the configuration of their
networks. They also experience difficulties in understanding
what is happening during a migration since complex interac-
tions may arise between upgraded and nonupgraded routers.
Consequently, as confirmed by many private communications
with operators, large-scale IGP migrations are often avoided
until they are absolutely necessary, thus hampering network
evolvability and innovation.

Most of the time, network operators target three aspects of the
IGP when they perform large-scale migrations. First, they may
want to replace the current protocol with another. For example,
operators may want to migrate to an IGP that provides more
guarantees against security attacks [4], [5], or that allows to in-
tegrate new equipments that are not compliant with the adopted
one [6], or that is not dependent on the address family (e.g.,
OSPFv3, IS-IS), e.g., to run only one IGP to route both IPv4
and IPv6 traffic [7], [5]. Second, when the number of routers
exceeds a certain critical mass, operators often introduce a hier-
archy within their IGP to limit the control-plane stress [8], [9].
Another reason operators introduce hierarchy is to have more
control on route propagation by tuning the way routes are prop-
agated from one portion of the hierarchy to another [3]. On the
contrary, removing a hierarchy might be needed to better sup-
port some traffic engineering extensions [10]. Third, network
operators also modify the way the IGP learns or announces
the prefixes by introducing or removing route summarization.
Route summarization is an efficient way to reduce the number
of entries in the routing tables of the routers as IGP networks
can currently track as many as 10 000 prefixes [11]. Route sum-
marization also helps improving the stability by limiting the vis-
ibility of local events. Actually, some IGP migrations combine
several of these scenarios, such as the migration from a hierar-
chical OSPF to a flat IS-IS [4]. Finally, operators may be forced
to revert back to a previous IGP configuration to meet technical
requirements [12].

In this paper, we aim at enabling seamless IGP migrations,
that is, progressive modifications of the IGP configuration of
a running network without losing packets. Our contribution is
manifold. First, we develop a generic IGP model and use it to
analyze in detail various scenarios of link-state IGP migrations.
In particular, we show that long-lasting forwarding loops can
appear, both theoretically and practically, when changes are
made to the IGP hierarchy and when route summarization
is introduced or removed. Second, we introduce a method-
ology that enables seamless IGP migration while minimizing
the number of reconfigurations per router. Our methodology
leverages the fact that several IGP processes can run at the
same time on a router. Each IGP process is assigned with
an administrative distance (AD), and the IGP process with

1063-6692/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

the lowest distance controls the forwarding. The reconfigu-
ration consists in introducing the final IGP configuration at
each router with a high AD, waiting for its convergence, and
lowering the distance router by router so that it is used for
forwarding. We show that, in real-world networks, it is possible
to find an ordering in which to reconfigure the routers while
guaranteeing no forwarding loop. Although finding such an
ordering is an NP-complete problem, we propose algorithms
and heuristics, and we show their practical effectiveness on
several ISP networks. We also show how our techniques can
deal with advanced reconfiguration scenarios by extending
them to support link failures. Finally, we describe the design
and the evaluation of a provisioning system that automates the
whole migration process according to our methodology. Our
system generates router configurations, assesses the proper
state of the network, and updates all the routers in an appro-
priate sequence. As shown in our evaluation and case study,
such a provisioning system enables faster and seamless IGP
migrations while avoiding human errors due to manual design
and application of new configurations on routers.

This paper extends the work that appeared in [13] with addi-
tional material, notably including: 1) the generalization of our
approach, based on a hybrid per-router and per-destination mi-
gration, in case any per-router reconfiguration causes packet
losses; 2) a study of how to achieve seamless IGP migrations
in presence of link failures; and 3) the proof that deciding if a
per-router ordering exists is NP-complete.

The rest of the paper is structured as follows. Section II pro-
vides a background on link-state IGPs and presents our abstract
model. Section III formalizes the IGP migration problem and
describes the migration scenarios we tackle. Section IV presents
our methodology. Section V proposes algorithms to compute
a loop-free migration ordering. Section VI presents our imple-
mentation. Section VII evaluates our migration techniques on
both inferred and real-world topologies. Section VIII explains
how to deal with network failures. Section IX defines design
guidelines that make IGP migrations easier. Section X presents
related work. Finally, Section XI concludes the paper.

II. LINK-STATE INTERIOR GATEWAY PROTOCOLS

In this section, we provide some background on link-state
IGPs. Also, we present the model we use in the paper.

A. Background

An IGP is a protocol that routers use to decide how to forward
packets within an AS. IGPs are divided in two main families:
distance-vector and link-state protocols. Although some enter-
prise networks still use distance-vector protocols, most ISPs and
large enterprises deploy link-state IGPs, namely OSPF [2] or
IS-IS [1]. In this paper, we focus on network-wide migrations
of link-state IGPs.

Link-state IGPs can be configured either in a flat or in a hierar-
chical mode. In flat IGPs, every router is aware of the entire net-
work topology and forwards IP packets according to the shortest
paths toward their respective destinations. In hierarchical IGPs,
routers are not guaranteed to always prefer the shortest paths.
Hierarchical IGP configurations break the whole topology into a
set of zones (called areas in OSPF and levels in IS-IS), which we
denote as B, 74, ..., Z.. B is a special zone, called backbone,

that connects all the other peripheral zones together, such that

IEEE/ACM TRANSACTIONS ON NETWORKING

packets from a router in the network to a destination inside a
different zone always traverse the backbone. IGP routers estab-
lish adjacencies over physical links in order to exchange routing
information. Each adjacency belongs to only one zone. By ex-
tension, we say that a router is in a zone if it has at least one ad-
jacency in that zone. We call internal routers the routers that are
in one zone only. The Zone Border Routers (ZBRs) (e.g., ABRs
in OSPF and L1L2 systems in IS-IS) are the routers that are in
more than one zone, among which one must be the backbone.
Both internal routers and ZBRs prefer intrazone over interzone
paths. This means that to choose the path on which to forward
packets toward a certain destination, each router prefers a path
traversing only one zone over a path traversing more than one
zone, no matter what is the length of the two paths.

Moreover, in hierarchical IGPs, ZBRs can be configured to
perform route summarization. In this configuration, ZBRs hide
the internal topology of a zone Z to routers in different zones,
advertising aggregated prefixes outside Z. In practice, they an-
nounce their ability to reach groups of destinations with paths
of a certain length. The length announced by a ZBR is the same
for all the destinations in an aggregated prefix, and either it is
customly configured, or it is decided on the basis of the ac-
tual lengths of the preferred paths toward that destinations (e.g.,
picking the highest one [2]).

B. Abstract Model for Link-State IGPs

In this section, we aim at capturing IGP configurations and
forwarding behavior of routers in a model that abstracts pro-
tocol-specific details. Transient IGP behavior is not modeled
since we ensure that both the initial and the final IGPs have con-
verged before starting the migration process (see Section V).

We formally define an IGP configuration as a tuple
(p, G, D,w,m). The tuple reflects configuration knobs avail-
able to operators. p is the identifier of an IGP protocol, e.g.,
OSPF or IS-IS. m is the mode in which the protocol is con-
figured, namely flat or hierarchical. G = (V, E) is the logical
graph, i.e., a directed graph that represents the IGP adjacencies
among routers participating in p. Each node in V' represents
an IGP router, and each edge in I represents an adjacency
between the two routers. Edges are labeled with the name of the
zones to which they belong. Moreover, the functionw : £ — N
associates a positive integer, called weight, to each edge in G.
Finally, D C V is the set of IGP destinations for traffic that
flows in the network. We associate each destination to a single
node in &, assuming that each IP prefix is announced by one
router only. This assumption is without loss of generality, as we
can use virtual nodes and GG can be transformed in a multigraph
in order to model peculiarities of the considered IGP. For ex-
ample, consider how to model the binding of each interface to
a given area or the redistribution of external prefixes in OSPF.
For each router r that coincides with a traffic destination, we
can add a virtual node r; for each OSPF area j in which r
participates, and a virtual node 7., for external destinations
injected by r in the IGP. For each r;, only one edge (7 r;),
belonging to zone Z; and weighted 1, is added to the graph.
One edge ¢; for each OSPF area j is also added between r and
Text. Bach e; is such that it is labeled as belonging to zone Z;
and w(e;) = 1. The destination set D will contain virtual nodes
only. Similarly, virtual nodes can be used to model IP prefixes
announced by more than one IGP router.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs

Packets destined to one router d € D follow forwarding
paths. A forwarding path, or simply path, P from s to d is a path
P = (sry...rp d) on G in which r;, with i = 1,...,k, are
routers traversed by the traffic flow. Several forwarding paths
can simultaneously be used for the same pair (s, d), e.g., in case
of Equal Cost Multi-Path (ECMP). The weight of a path is the
sum of the weights of all the links in the path.

According to the IGP configuration, each router chooses its
preferred path toward each destination and forwards packets
to the next-hops in such preferred paths. To model this be-
havior, we define the next-hop function nh and the actual path
function 7(w,d,). Both functions are derived from the IGP
configuration of a network, i.e., an IGP configuration univo-
cally determines the next-hop and the actual path functions.
We denote the set of successors (next-hops) of « in the paths
router v uses at time ¢ to send traffic destined to destination d
by nh(u, d,t). Notice that |nh(wu,d,t)| is not guaranteed to
be equal to 1 since routers can use multiple paths to reach
the same destination (e.g., in presence of ECMP). The paths
actually followed by packets sent by w toward d at time ¢
can be computed as a function m: w(u, d,) is the set of paths
resulting from a recursive concatenation of next-hops. More
formally, 7 (u, d, t) is a function that associates to each router
the set of paths {(vg vy -~ vi)}, such that vy = w, v, = d
and Vi € {0,...,k — 1}v;+1 € nuh(v;,d,t). Note that the
actual path function does not always coincide with the pre-
ferred path of each router since deflections can happen in
the middle of a path [14]. A series of deflections can even
build a forwarding loop, as shown in different examples in
Section III-A. More formally, there exists a forwarding loop,
or simply a loop, for a given destination d at a given time ¢ if
Ir: w(r,d,t) = (rog ... v;r), withj > 0.

By appropriately tuning the next-hop function, our model is
able to capture specific details of IGP configurations such as
the corresponding forwarding rules in hierarchical and flat mode
and route summarization. In Section III-A, we provide some ex-
amples of next-hop functions, actual path functions, and migra-
tion loops in different migration scenarios.

III. IGP MIGRATION PROBLEM

In this section, we study the problem of seamlessly migrating
a network from one IGP configuration to another. Both config-
urations are provided as input (i.e., by network operators) and,
by definition, are loop-free.

Problem 1: Given a unicast IP network, how can we re-
place an initial IGP configuration with a final IGP configura-
tion quickly, with minimal configuration changes and without
causing any forwarding loop?

Assuming no network failures and no congestion, solving
this problem leads to seamless migrations. Observe that our
approach reduces the opportunities for failures during the mi-
gration process because of its time efficiency. Furthermore, in
Section VIII, we show how to extend our techniques to provide
guarantees even in case of network failures. Similar extensions
may be used to avoid congestion during the migration. We plan
to fully investigate congestion-free migration techniques in fu-
ture work. However, we argue that congestion issues are less
critical, as they can be strongly mitigated by performing the mi-
gration during time slots in which traffic is low. Also, large ISPs

TABLE I
IGP MIGRATION SCENARIOS

scenario | IGP configuration changes

protocol protocol replacement
flat2hier zones introduction
hier2flat zones removal
hier2hier zones reshaping

summarization | summarization introduction/removal

are normally overprovisioned [15], further reducing the risk of
congestion.

In this paper, we focus on issues generated by the IGPs
themselves, while leaving migration issues due to the presence
of additional routing protocols in the network (e.g., BGP) to
future work. In the rest of the paper, we call router migra-
tion the replacement of the initial next-hop function nhjy;t
with the final next-hop function nhg,, on a given router.
Formally, we define the operation of migrating a router r at
a certain time as the act of configuring the router such that
nh(r,d,t) = uhgpa(r, d), Vd € D and V¢ > . We call router
migration ordering the ordering in which routers are migrated.
A network migration is completed when all routers have been
migrated. In this paper, we focus on per-router migrations in
which all the destinations are migrated at the same time in order
to limit the number of configuration changes and to minimize
the migration duration. However, such an ordering might not
always exist as described in Section III-A. Only in such cases,
we compute and apply separate migration orderings for the
troublesome destinations (see Section IV). Results of our eval-
uation (see Section VII) suggest that troublesome destinations
are zero or few in realistic topologies.

Throughout the paper, we focus our attention on migration
loops, that is, loops arising during an IGP migration because
of a nonsafe router migration ordering. Migration loops are not
protocol-dependent, and are more harmful than loops that arise
during protocol convergence as they last until specific routers
are migrated (e.g., see Section III-A). Observe that if nhy,;; =
nhg a1, the T function does not change either, hence any router
migration ordering is ensured to be loop-free.

A. IGP Migration Scenarios

Table I presents the IGP migration scenarios we address
in this paper. We believe that those scenarios cover most of
the network-wide IGP migrations that real-world ISPs can en-
counter. Each scenario concerns the modification of a specific
feature of the IGP configuration. Moreover, different scenarios
can be combined if more than one feature of the IGP configura-
tion has to be changed. We do not consider the change of link
weights as a network-wide migration. Indeed, traffic matrices
tend to be almost stable over time [16], and ISPs typically
change the weights of a few links at a time. Moreover, effective
techniques have already been proposed for the graceful change
link weights [17]-[21]. Nevertheless, our generalized model
and the techniques we present in Section V are also applicable
to reconfigure link weights. Furthermore, since the addition and
the removal of links and devices can be modeled as a change
of some link weights from an infinite to a finite value or vice
versa, our approach can also be used to guarantee no packet
loss during topological changes.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

BACKBONE

PERIPHERAL
ZONE

Ty nhhier ges

Fig. 1. Bad square gadget. When the IGP hierarchy is modified, a given mi-
gration ordering is needed between B1 and E1 to avoid forwarding loops.

In the following, we describe the issues that must be ad-
dressed in each migration scenario we target, using the notation
introduced in Section II-B.

1) Protocol Replacement: This migration scenario consists
of replacing the running IGP protocol, but keeping the same nh
function in the initial and in the final configurations. A classical
example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [3]. Since
the nh function is the same in both IGPs, routers can be migrated
in any order without creating loops.

2) Hierarchy Modification: Three migration scenarios are
encompassed by the modification of the IGP hierarchy. First, a
flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one
zone. Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.

Unlike protocol replacement, changing the mode of the IGP
configuration can require a specific router migration ordering.
Indeed, the nh function can change in hierarchy modification
scenarios because of the intrazone over interzone path prefer-
ence rule applied by routers in hierarchical IGPs (see Section II).
Hence, forwarding loops can arise due to inconsistencies be-
tween already migrated routers and routers that are not migrated
yet. Consider for example the topology depicted on the left side
of Fig. 1. In a flat2hier scenario, some routers change their
next-hop toward destinations £'1 and F2. In particular, the right
side of Fig. 1 shows the next-hop function for all the routers
when the destination is /2. During the migration process, a
forwarding loop arises for traffic destined to £2 if B1 is mi-
grated before E'1. Indeed, 31 reaches E2 via E'1 in hierarchical
mode, and 1 reaches E2 via B1 in flat mode. Hence, for each
time ¢ where B1 is already migrated and E1 is not, the for-
warding path used by B1 is 7(B1, E2,t) = {(B1 E1 B1)}
since nhgnai(B1, £2) = {E1} and nhiy (F1, £2) = {B1}.
Notice that such a loop lasts until £1 is migrated. A symmetric
constraint holds between routers B2 and E2 for traffic destined
to 1. A loop-free migration can be achieved by migrating £'1
and £2 before B1 and B2.

Nevertheless, there are also cases in which it is not possible
to avoid loops during the migration. Consider, for example, the
topology represented in Fig. 2. In this topology, symmetric con-
straints between 31 and 32 for traffic destined to £2 and E3
imply the impossibility of finding a loop-free ordering. We refer
the reader to the central and the right parts of Fig. 2 to visualize
the next-hop functions in flat and hierarchical modes.

Similar examples can be found for hier2flat and hier2hier
migrations. They are omitted for brevity. Observe that problems

IEEE/ACM TRANSACTIONS ON NETWORKING

in hierarchy modification scenarios are mitigated in protocols
such as IS-IS that natively support multiple adjacencies [1]. In
fact, multiple adjacencies belonging to different zones decrease
the number of cases in which the nh function changes during the
migration. However, migration loops can still arise, depending
on the initial and the final configurations.

3) Route Summarization: Introducing or removing route
summarization (i.e., summarization scenarios) in a network can
lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 3. The right part of the figure
visualizes the nh functions before and after the introduction
of route summarization. In this case, the introduction of route
summarization on B1 and B2 can lead to a forwarding loop
between B3 and B4 for traffic destined to £2. Indeed, before
summarizing routes, 133 and 34 prefer to send traffic destined
to E2 via B2. On the other hand, when summarization is
introduced, 31 and 32 propagate one aggregate for both E'1
and E2 with the same weight. Hence, B3 and B4 change their
next-hop since the path to B1 has a lower weight than the path
to B2.

As for hierarchy modifications, no loop-free ordering exists
in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric con-
straints on the migration order hold between B3 and B4.

IV. METHODOLOGY

Fig. 4 illustrates the main steps of our methodology. In the
first step, we precompute an ordering in which to seamlessly mi-
grate routers with no packet loss (Section V). Migrating all the
routers at once is not a viable solution in practice as it can gen-
erate protocol-dependent loops and control-plane traffic storms
concerning all the protocols (BGP, LDP, PIM, etc.) that rely on
the IGP. Moreover, this approach prevents operators from con-
trolling the migration process and from falling back to a pre-
vious working state when a problem is detected, e.g., when a
router does not receive an intended command. All the discus-
sions that we had with network operators further confirmed that
they prefer to gradually migrate their network to have full-con-
trol of the process. In the same step, when a per-router ordering
does not exist, we identify the set of problematic destinations
for which contradictory ordering constraints exists, and we com-
pute a per-destination ordering for each of them. Then, we com-
pute a per-router ordering for the rest of the destinations.

The actual migration process begins in the second step. As
basic operation, we exploit a known migration technique called
ships-in-the-night [3], [4], [7], in which both the initial and
the final IGP configurations are running at the same time on
each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the AD. When a route
for a given prefix is available in multiple processes, the one
with the lowest AD is installed in the Forwarding Information
Base (FIB). In this step, we set the AD of the routing process
running the final IGP configuration to 255 since this setting en-
sures that no route coming from that process is installed in the
FIB [22]. All ISP routers typically support this feature.

In the third step of the migration, we wait for network-wide
convergence of the final IGP configuration. After this step, both
IGPs are in a stable routing state.

In the fourth step, we progressively migrate routers following
the ordering precomputed in the first step of the methodology.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs

BACKBONE

{PERIPHERAL
ZONE

1

BACKBONE

4

PERIPHERAL
ZONE

..

Fig. 3. Route summarization gadget. When summarization is introduced or re-
moved, a specific migration ordering is needed between 33 and 134 to avoid
forwarding loops.

Seamless IGP Migration Methodology

1) Compute a lossless router migration order. In case
no per-router ordering exists, compute a per-destination
ordering for the troublesome destinations.

2) Introduce the final IGP configuration. The final IGP
configuration is introduced on all the routers in the
network. However, routers continue to forward packets
according to the initial IGP configuration.

3) Monitor the final IGP status. Wait for the convergence
of the final IGP configuration.

4) Progressively migrate routers. The pre-computed loss-
less router migration order is followed. In case no
per-router migration ordering exists, a per-destination
ordering is also applied for the troublesome destinations.

5) Remove the initial IGP configuration. The initial IGP is
removed from all the routers in the network.

Fig. 4. Proposed methodology for seamless IGP migrations.

For this purpose, we lower the AD of the routing process run-
ning the final IGP such that it is smaller than the AD of the
process running the initial configuration. Doing so, the router
installs the final routes in its FIB. If a per-destination ordering
is required for some destinations, we prevent them from being
routed according to the final IGP by keeping the AD of these
destinations to a high value. This could be done by using tailored
route-maps matching the problematic destinations (see [23] and
[24]). After, we migrate the problematic destinations one by
one, by lowering their AD following the precomputed per-desti-
nation orderings. Since a routing entry change could take about
200 ms before being reflected in the FIB [25], we wait for a
given amount time (typically a few seconds) before migrating
the next router in the ordering. This step ensures a loop-free
migration of the network. Notice that switching the AD and up-
dating the FIB are lossless operations on ISP routers [26].

In the last step, we remove, in any order, the initial IGP con-
figuration from the routers. This is safe since all of the routers
are now using the final IGP to forward traffic.

Fig. 5. Gadgets used in the reduction from 3-SAT to RMOP. Solid lines repre-
sent nhiy, ¢, while dotted lines represent 1h¢i,.i. Edges are labeled with desti-
nations to which they refer. (a) Variable gadget. (b) Clause gadget.

V. LOOP-FREE MIGRATIONS

In this section, we study the problem of migrating a network
from one link-state IGP configuration to another without cre-
ating any loop. First, we prove that the problem is NP-complete.
Then, we present the algorithms we use to compute a loop-free
router migration ordering. Finally, we describe how to adapt the
algorithms to compute a per-destination ordering to use as fall-
back when a per-router ordering does not exist.

A. Router Migration Ordering Problem

We now study the following problem from an algorithmic
perspective.

Problem 2: Given an initial and a final next-hop function, a
logical graph G, and a set of destinations [, compute a router
migration ordering, if any, such that no forwarding loop arises
inGG foranyd € D.

Even the problem of deciding if a loop-free router migra-
tion ordering exists, which we call Router Migration Ordering
Problem (RMOP), is an A"P-complete problem. In order to
prove the complexity of the RMOP problem, we use a reduc-
tion from 3-SAT [27]. In the following, we denote the fact that
w s migrated before v with u < v. Consider a logical formula F'
in conjunctive normal form. Let C, . . ., C; be the clauses in F,
X1,..., X}, be the variables, and X; and X the literals corre-
sponding to X . In the following, we build the RMOP instance
S = (G = (V,E), D,nhjn, nhgpna)) corresponding to .

As abasis, GG contains a single vertex P. For each variable X;
in F, we add to .S a variable gadget as depicted in Fig. 5(a). In
practice, we add two vertices d;1, d;2, x; and Z; to G, along with
edges (z; P), (Z; P), and (z; &;). d;1 and d;2 are also added
to D. Intuitively, node z; and Z; represent literals z; and Z;,
respectively. In the following, we call nodes x; and Z; literal
vertices. Assigning TRUE to X; corresponds to migrate X; be-
fore P, while assigning FALSE to z; implies Z; < P. For each
clause C; = (L1 V Lo V L3), we add a clause gadget similar
to that depicted in Fig. 5(b). For each literal in C;, we add the
corresponding literal vertex, along with edges (/4 12). (I2 I3),

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

(I3 P), and (P 1,). Moreover, a vertex d; is added to both V
and D. After having added all the vertices, one edge is added to
FE from any vertex to any destination.

Finally, we define the next-hop functions. For each
dih nhinit (“’a dil) = Hhﬁnal(u'/ dtl) = {dil} Yu €
Vv, except nhinit(mi,(lil) = {Tl}, Ilhinit(.i‘.[‘./dil) =
{P}, and nhapa(z;.di1) = {Z;}. Similarly, for each
d;a, nhinit(u: (11'2) = nhﬁnal(u, dig) = {di?} Yu € V,
except nhini;(P, dig) = {’TL} Ilhﬁnal(x,‘,.,(lig) = {’T‘Z}, and
nhana1(Z;, diz) = {P}. Finally, for each d; corresponding
to a clause Cj = (le \ ng \Y ng), nhinit(ua (]Z) =
Ilhﬁnal(u, (jj) = ~{d~]} Yu € V, except }lhﬁnal(P, (j]) =
{in} nhie(ljn, dy) = {lj2}, nhiie(lja.d;) = {l;3}, and
nhinic (s, dy) = {P}.

Regarding destinations d;; and d;», it is easy to verify that
only z;,7;, and P can be part of a loop since the next-hop of
all the other vertices is the destination in both the initial and the
final next-hop functions. In particular, a loop arises toward d;;
or d;o if and only if P is the first node to be migrated or P is the
very last node to be migrated, respectively.

Property 1: A router migration ordering does not create a
loop toward destinations d;; and d;» if and only if:

e x; < P — P <z

e org; < P— P <z
As a consequence, only the orders z; < P < Z; and Z; <
P < u; are loop-free. This prevents a variable to be TRUE and
FALSE at the same time.

Analogously, for destinations d;, all the routers, except
l;1.1;2.1;3, and P, cannot be part of a loop since their next-hop
is d; in both the next-hop functions. The following property
holds for ljl, le./ ljg, and P.

Property 2: A loop arises toward a destination d; if and only
if P is migrated before all the vertices {;, with = 1,2, 3, cor-
responding to a literal in C;.

It is easy to check that the reduction can be done in polyno-
mial time. We now use such a reduction to prove the complexity
of RMOP.

Theorem 1: The Router Migration Ordering Problem is
NP-complete.

Proof: Consider a logical formula ' in conjunctive normal
form. Let S be the instance of the Router Migration Ordering
Problem corresponding to F'. Then, we have the following.

» If F is satisfiable, then there exists a router migration order
in S that does not create any forwarding loop. In fact, if
F' is satisfiable, then there exists at least one boolean as-
signment such that for each clause C'; at least one literal
l; is TRUE. This corresponds to /; < P in the migration
order. Such a condition guarantees that no loop arises in
the clause gadget corresponding to C';, by Property 2. The
same argument can be iterated on all the clauses in £'. Since
the boolean assignment that satisfies F' is a valid assign-
ment, no variable is assigned both TRUE and FALSE at
the same time, hence no loop can be generated in the vari-
able gadget (Property 1).

e If I is not satisfiable, then there does not exist a router
migration order in .S that does not create any forwarding
loop. In fact, if I is not satisfiable, then for each valid
boolean assignment, at least one clause C,, = (Lj1 V
Ljs v Lj3) is not satisfied by the boolean assignment.

IEEE/ACM TRANSACTIONS ON NETWORKING

: loop_enumeration_run(G = (V, E), D,nhinit,nh final)
CS <+ 0
:forde D do
Gq = (V, E), with E = {(u v)} such that v € nhint(u,d)
orv e nhfinal (u; d)

b

5: for each cycle L in Gq do

6: Vinit,p = {u € L : Jv, (u v) € L,v € nhinit(u,d) but
v & nhyina(u, d)}

7: Viinai,e = {u € L : Ju, (u v) € L,v € nhfina(u,d)
but v & nhin(u,d)}

8: CS + CSU{upV---Vug <wvgV--Vu}, where

Ui € Vinit,r Vi =0,...,k, and v € Viina,r V5 =0,...,1L
9: end for
10: end for
11: LP < new LP problem
12: for ugV---Vur <voV---Vuy € CS do
13: add to LP the following constraints
14: tug — MAX_INT X Y1 < ty,
15:
16: tug — MAX_INT X Y7 < ty,
17: tuy, — MAX_INT X Y41 < to,
18:
19: tu, — MAX_INT X Yixp < ty,
20: tugy - -+ stuy,togs -« -, by, integer
21: Y1,...,Yxk binary
22 Drcicmixi Yi <UXE
23: end for
24: return solve_Ilp_problem(LP)

Fig. 6. Loop Enumeration Algorithm.

However, this means that all the literals in C,, are FALSE.
This corresponds to migrate P before all the nodes /;;,
with ¢ € {1,2,3}. Hence, a loop arises for destination d,,
by Property 2. The same argument can be iterated on all
the boolean assignment on the variables in F'. As a conse-
quence, every router migration ordering on S contains at
least one loop.

The proof is completed by noting that a loop-free router migra-

tion order is a succinct certificate for S.]

B. Router Migration Ordering Algorithms

We now present a correct and complete algorithm to find a
loop-free ordering. Because of the complexity of the problem,
the algorithm is inefficient and can take several hours to run on
huge ISP networks (see Section VII). Hence, we also propose
an efficient heuristic that is correct but not complete.

In the following, we describe our algorithms in the absence
of virtual nodes. Explicit support of virtual nodes is not needed
since virtual nodes never change their respective next-hop func-
tion. Indeed, consider the logical graph on which the algorithms
run. By construction, each virtual node v has only one edge, con-
necting it to the node u representing the corresponding physical
router. Consequently, the next-hop of v is always v when v itself
is the destination and it is always u for any other destination.

Loop Enumeration Algorithm: The Loop Enumeration Algo-
rithm (Fig. 6) enumerates all the possible migration loops that
can arise during a migration. Then, it outputs the sufficient and
necessary constraints that ensure that no loop arises. To iden-
tify all possible migration loops, for each destination d, the al-
gorithm builds the graph G4 (line 4) as the union of the actual
paths in the initial and in the final configuration. G4 contains all

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs

LEGEND

nhim-t —>
nhfinal =
c € ‘/inzt,L

c2,¢3 € Vfinal,L

Fig. 7. Abstract representation of a migration loop.

the possible combinations of paths followed by traffic destined
to d for any migration order. Then, all the cycles are enumer-
ated, and for each cycle, the algorithm outputs the constraint
(line 8) of migrating at least one router that participates in the
loop in the initial configuration before at least one router that is
part of the loop in the final configuration (lines 5-8). In the ex-
ample of Fig. 7, indeed, migrating ¢; before at least one among
co and c3 avoids the loop. In the algorithm, Vi, 1 represents
the set of routers that participate in the loop when they are in the
initial configuration (line 6), and V,a1,7, contains only routers
that participate in the loop when they are in the final configu-
ration (line 7). The constraints identified by the algorithm are
encoded in an integer linear program (lines 12-22), where the
variables ?,,, represent the migration steps at which routers can
be safely migrated (lines 14—19). Finally, the algorithm tries to
solve the linear program and returns a loop-free ordering if one
exists (line 24).

We now show correctness and completeness of the Loop Enu-
meration Algorithm.

Theorem 2: The Loop Enumeration Algorithm is correct and
complete.

Proof: We prove the statement by showing that the linear
program solved in the Loop Enumeration Algorithm encodes all
the sufficient and necessary conditions for any migration loop to
not arise. Indeed, let ug V... Vuy < vy V...V be the ordering
constraint that the Loop Enumeration Algorithm identifies for a
given loop L = (cg ¢1 ... ¢ ¢g) concerning traffic destined
to d € D. We now show that L does not arise at any migration
step if and only if the constraint is satisfied.

If the loop does not arise, then the constraint is satisfied.
Suppose by contradiction that the constraint is not satisfied.
Then, there exists a time ¢ such that all the routers in Viipa 1
are migrated while all the routers in Vi, are not migrated.
Consider ¢g. If ¢g € Vinal, 1, then it is already migrated, i.e.,
nh(cg, d,t) = nhgna{co, d), hence ¢; € nh(cey, d, t), by defini-
tion of Viiar .. If co € Vigie,z, then nh{cg, d, #) = nhjyi(co, d)
and ¢; € nh(cy,d,?). Finally, if cg & Vinit, and cg & Vanal £,
then ¢; € nh(eg,d,t) Vt. In any case, ¢; € nh(eg,d,?). It-
erating the same argument for all the routers in I, we conclude
thate; 1 € nh(e;, d, #), withe = 0,..., %k and ¢p41 = co. Thus,
L arises at time 7.

If the constraint is satisfied, then the loop does not arise. As-
sume, without loss of generality, that ¢,, € Vi, 1, is migrated
at time ¢, while at least one router ¢, € Vinal,z 1s migrated
att” > t’. Then, L cannot arise V¢ < ¢’ since nh(e,,d,t) =
thinit (¢y, d) implies that ¢, 11 ¢ nh(c,,d,) by definition of
Viinal,L- Moreover, L cannot arise V¢ > ¢’ since nh(c,, d, t) =
nhfiai(cy, d) implies that ¢, 1 & nh(e,,d,t) by definition of

: routing_trees_run(G = (V, E),D,nh;nit,nh final)

C+0

:forde D do
Sq < greedy_run(V,d,nhinit,nhfinat)
Va < {vi : nhinit(vi,d) # nhfina(vi,d)}
Gq = (V,E"), with E' = {(u,v) : v € nhina(u,d)}
for P = (1}0 vk), with v = d, (Ui,vi+1) c E,, and

predecessors(vg) = @ do

8: last <= Null _

9: for u e PNVyand u &€ Sq do

10: if last # Null then

11: C + CU{(u,last)}

12: end if

13: last + u

14: end for

15: end for

16: end for

17: Ge + (V,C)

18: return topological_sort(G.)

19:

20: greedy_run(V,d,nhinitynhfinat)

21: Sg+ 0

22: N + {d}

23: while N # 0 do

24: Si=S4UN

A ANl >

25: N=0

26: forueV,u ¢ Sq do

27: if nhinit (u, d) U nhfiml(m d) C Sy then
28: N = NU{u}

29: end if

30: end for
31: end while
32: return Sy

Fig. 8. Routing Trees Heuristic.

Viuit,z. Since ¢ > ¢/, no time exists such that L arises during
the migration.]

It is easy to verify that the algorithm requires exponential
time. Indeed, the algorithm is based on the enumeration of all
the cycles in a graph, and the number of cycles in a graph can
be exponential with respect to the number of nodes.

Routing Trees Heuristic: The Routing Tree Heuristic is illus-
trated in Fig. 8. Intuitively, it computes ordering constraints sep-
arately for each destination, so that next-hop changing routers
are not migrated before their final forwarding path to each des-
tination is established (similarly to what is proposed in [18]
and [20]). A router ordering that satisfies all per-destination
constraints is then computed. As the first step, for each des-
tination d € D), the heuristic exploits a greedy procedure to
compute a set S; of nodes that are guaranteed not to be part
of any loop (line 4). The greedy procedure (lines 20-32) in-
crementally (and greedily) grows the set Sy, adding a node
to Sy at each iteration if and only if all the next-hops of the
node in the initial and in the final configurations are already in
S4 (lines 27-28). After this step, the Routing Trees Heuristic
builds directed graph G, which is guaranteed to be acyclic
since the final configuration is loop-free. G, contains only the
actual paths followed by packets to reach d in the final config-
uration (line 6). Then, it generates a constraint for each pair of
routers (v, v) such that (u...v...d) € 7aya(u, d), and both u
and v do not belong to S; and change at least one next-hop be-
tween the initial and the final configuration (lines 7—15). In par-
ticular, among the routers that change one or more next-hops

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

during the migration (set V; at line 5), each router is forced
to migrate after all its successors in the actual path toward d
(line 11). In the final step, the heuristic tries to compute an or-
dering compliant with the union of the constraints generated for
all the destinations (lines 17-18).

It is easy to check that the algorithm is polynomial with re-
spect to the size of the input. We now prove that the algorithm
is correct. First, we show that the routers in S; can be migrated
in any order without creating loops toward d, hence it is pos-
sible not to consider them in the generation of the ordering con-
straints. Then, we prove that the constraints are sufficient to
guarantee that the ordering is loop-free.

Lemma 1: 1f the greedy procedure adds a router u to Sy,
then « cannot be part of any migration loop toward destination
deD.

Proof: Suppose, by contradiction, that there exists a
router « added to S by the greedy procedure at a given itera-
tion 7, such that (w vy ... vy u) € w(u,d,t), withk > 0, ata
given time ¢ and for a given migration ordering. By definition
of the algorithm, one router is added to S; if and only if all its
next-hops wy, . . . , w, (in both the initial and final IGP config-
urations) are already in Sy since each node in {wy,...,w,}
is added to Sy at a given iteration before 7. Hence, vy € Sy
at iteration ¢ because u is one of the next-hops of v and it
is added to Sy at iteration i by hypothesis. Iterating the same

argument, all routers v, & Sy at iteration ¢, Vh = 0,... k.
As a consequence, GREEDY does not add u to Sy at iteration ¢,
which is a contradiction. [|

Theorem 3: Let S = x1,...,x, be the sequence computed
by the Routing Tree Heuristic. If the routers are migrated ac-
cording to S, then no migration loop arises.

Proof: Suppose by contradiction that migration is
performed according to .S, but migrating a router u cre-
ates a loop for at least one destination d. In that case,
there exists a set of routers V. = {wiy,..., v}, such that
C = (uvy ... vp u) € w(u,d,t), at a certain time ¢. By
Lemma 1, all v; & Sy;. By definition of the heuristic, all
routers v; are such that nh(v;,d,t) = nhga(v;,d), with
it = 0,...,k, because either they do not change their next-hop
between the initial and the final configuration or they precede
u in S. Hence, at time ¢, both « and all the routers v; € V
are in the final configuration. This is a contradiction since we
assumed that the final IGP configuration is loop-free. [|

Note that the heuristic is not complete; while the constraints
it generates are sufficient to guarantee no forwarding loops, they
are not necessary. Indeed, for each destination d, it imposes spe-
cific orderings between all the routers (not belonging to Sy) that
change one of their next-hops toward d, even if it is not needed.
For instance, in the scenario of Fig. 9, the heuristic mandates
v to be migrated before v and u before z. However, no loop
arises also if v is migrated before z and z before 1. Generating
unnecessary constraints prevents the heuristic from identifying
a loop-free migration ordering every time it exists. Nonethe-
less, in carefully designed networks [28], such cases are rare.
In Section VII, we show that the heuristic found an ordering in
most of our experiments on realistic topologies.

C. Per-Destination Ordering

If a per-router ordering does not exist or the Routing Tree
Heuristic does not find a solution, a per-destination ordering can

IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. Insome migration scenarios, the Routing Trees Heuristic generates un-
necessary constraints.

MIGRATION PILOT

— = Configuration
—_ — Manager
'

' = \ update cunﬁgs“\ «"compure order
\
) Migration
\ <\ Controller
2)

) monitor IGPs " .., check IGPs

-~ _l
- | IGP LSA IGP State
- ’| Listener | |
1

Ordering
Component

Asserter

® 0w o
_~Mojiitoring ¥

/v/ tation

L — = 4

IGP Info DB

Fig. 10. Provisioning system automates all the reconfiguration process. It com-
putes the ordering, monitors the network, and pushes the intermediate configu-
rations in the appropriate order.

be computed. The per-destination ordering is applied to prob-
lematic destinations only, that is, to the destinations for which
contradictory ordering constraints exist. Per-destination order-
ings can be computed directly from the ordering constraints
identified by our per-router ordering algorithms. Note that it
may not be necessary to compute an ordering for every problem-
atic destination since excluding a destination from the per-router
ordering may unlock the problem for a set of other problematic
destinations. The number of destinations for which a per-des-
tination ordering is required can thus be minimized. However,
our experimental evaluation (see Section VII) suggests that po-
tentially troublesome destinations are few in practice, hence the
need for minimizing problematic destinations is limited.

VI. PROVISIONING SYSTEM

We realized a system which computes and automates all the
required steps for a seamless migration. The architectural com-
ponents of our system are depicted in Fig. 10. We now describe
how data flows through the system (dashed lines in the figure),
while stressing the role of each component.

The main purpose of the monitoring component is to assess
properties of intermediate configurations, that is, checking that
given routers are correctly migrated and the expected routing
state is reached. The monitoring mechanisms also enable failure
detection. However, while we discuss how to prevent packet
loss due to network failures in Section VIII, we plan to study ef-
fective reactive strategies to unexpected failures in future work.
The monitoring component encompasses an IGP Link-State Ad-
vertisement (LSA) Listener and an IGP State Asserter. The /IGP
LSA Listener collects and parses the IGP LSAs exchanged by
routers, storing IGP adjacencies, link weights, and announced
IP prefixes in a database. We chose to implement the IGP LSA
Listener by using packet-cloning features available on routers,
as it is shown to be an effective method to collect all control-
plane messages with low resource consumption on monitored

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs

routers [29]. The IGP State Asserter queries the database and
assesses properties of the monitored IGPs state. The current im-
plementation of the IGP State Asserter can check an IGP for
convergence completion. IGP convergence is deduced by sta-
bility, over a given (customly set) time, of the expected IGP
adjacencies and of the announced prefixes. Moreover, the IGP
State Asserter is able to verify the announcement of a given set
of prefixes in an IGP, and the equivalence of two IGPs, i.e., the
equivalence of the logical graph, and of the forwarding paths
toward a given set of destinations.

The IGP State Asserter is triggered at specific moments in
time by the Migration Controller, which is the central compo-
nent of the system, responsible for tasks’ coordination. Before
the actual migration process starts, it delegates the computation
of a loop-free router migration ordering to the Ordering Compo-
nent. This component implements the ordering algorithms de-
scribed in Section V-B. Then, the Migration Controller runs the
IGP LSA Listener. When needed (see Section IV), the Migra-
tion Controller asks the IGP State Asserter to assess whether it
is possible to safely modify the configuration of the devices in
the network without incurring transient states. This boils down
to checking the stability of the current IGP. At each step of the
migration process the controller also requires the Configuration
Manager to properly update the configuration on the routers as
described in Section IV. Based on a network-wide model, the
Configuration Manager generates the necessary commands to
be sent to routers for each migration step. The Configuration
Manager is based on an extended version of NCGuard [30].

VII. EVALUATION

In this section, we evaluate the ordering algorithms and the
provisioning system. The system is evaluated on the basis of
a case study in which a network is migrated from a flat to a
hierarchical IGP.

A. Data Set and Methodology

Our data set contains both publicly available and confiden-
tial data relative to commercial ISP topologies. Concerning pub-
licly available topologies, we used the inferred topologies pro-
vided by the Rocketfuel project [31]. Rocketfuel topologies rep-
resent ISPs of different sizes, the smallest one having 79 nodes
and 294 edges, while the biggest one contains 315 nodes and
1944 edges. In addition, some network operators provided us
with real-world IGP topologies. In this section, we discuss the
result of our analyses on all the Rocketfuel data and on the
anonymized topologies of three ISPs, namely tier1. A, tierl.B,
and tier2. tierl. A is the largest Tierl, and its IGP logical graph
has more than 1000 nodes and more than 4000 edges. tierl. A
currently uses a flat IGP configuration. The other two ISPs are
one order of magnitude smaller, but use a hierarchical IGP.

On this data set, we performed several experiments. We con-
sidered the introduction of summarization, as well as flat2hier
and hier2hier scenarios. Since most of the topologies in our data
set are flat, we artificially built a hierarchy (i.e., the separation
in zones) in order to consider scenarios in which hierarchical
configurations are needed. In particular, we grouped routers ac-
cording to geographical information present in the name of the
routers. Doing so, we built two hierarchical topologies out of
each flat topology. In the first one, zones are defined per city. In

3 - X- X o L‘,(;? ~~~~~
«©
@
>
o
[=4
S « !
o o !
3 i
5 :
2
© < Vi
S o ;
E b
3 !
*ﬁ —=— flat2hier
o HE 3 5 3 .
S - --A- introducing summarization
j -%- adding 1 link to the backbone
i -~ adding 2 links to the backbone
- . -~ adding 4 links to the backbone
T T T T T
0 20 40 60 80

of possible loops

Fig. 11. CDF of the number of loops that can arise on Rocketfuel topologies.
In the worst case, up to 80 different forwarding loops can be created during the
reconfiguration.

the second one, zones are defined per-continent. In both topolo-
gies, we built the backbone by considering routers connected
to more than one zone as Z B Rs and routers connected only to
Z B Rs as pure backbone routers. To simulate a hier2hier sce-
nario, we artificially enlarged the backbone by moving to it a
fixed number (from 1 up to 32) of links. Such links were ran-
domly chosen among the links between a Z 3R and a router
that does not participate in the backbone. For the summariza-
tion scenario, we aggregated all the destinations inside the same
zone into a single prefix. This was done for all the zones but the
backbone. Our hierarchy construction methodology and the way
prefixes are summarized follow the guidelines proposed in [32].
All the tests were run on a Sun Fire X2250 (quad-core 3-GHz
CPUs with 32 GB of RAM). We omit the results of some exper-
iments due to space limitations.

B. Ordering Algorithms

We first evaluate the usefulness and efficiency of the Loop
Enumeration Algorithm and Routing Tree Heuristic. Fig. 11
shows the cumulative distribution function (cdf) of the number
of loops that can arise in Rocketfuel topologies. Different migra-
tion scenarios are considered. Each point in the plot corresponds
to a specific topology and a specific scenario. In flat2hier, up
to 80 different loops can arise in the worst case, and at least
30 loops can arise for four topologies out of 11. Other sce-
narios follow similar trends. Observe that in the hier2hier sce-
nario (curves “adding « links to the backbone”), the number
of possible loops significantly increases with the number of
links which change zone. In all the scenarios, almost all the
loops involve two routers, with a few exceptions of three routers
loops. Also, the vast majority of loops concern traffic destined
to routers that do not participate in the backbone. These routers
are at the border of the network (e.g., BGP border routers or
MPLS PEs) and normally attract most of the traffic in ISP net-
works. Hence, computing an ordering in which they are not in-
volved in loops can be critical. The number of migration loops
is topology-dependent, hence it can be influenced by our design
approach. However, these results clearly show that migrating
routers in a random order is not a viable option in arbitrary net-
works. Additionally, for practical reasons, it is desirable that
migrations of worldwide networks be carried out on a per-zone

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

40 1 © loop enumeration algorithm
X routing trees heuristic

+ routing trees without greedy_run

30 - x

20 -

% of routers involved in ordering constraints
x+

10
°]
* x
e o * x o
° o

0+ *
T T T T T T T T T T T
2 2 £ & tE & E & tE & E
Q < o 2 (3] < o 2 o 2 o
- @ d 7o) o N - N - — -
] 2] 2 0 v Lo -] © B © =
[N « g N~ U,Q Ql UN’ [} g < g
~— v = - - [sp} o (<o} o © ©

Fig. 12. Percentage of routers involved in the ordering in flat2hier (Rocketfuel
topologies). Results for other scenarios are similar.

basis, i.e., migrating all the routers in the same zone (e.g., a con-
tinent) before routers in other zones. We argue that it is often
possible to compute and apply per-zone orderings. Indeed, in
both the Rocketfuel and the real-world topologies we analyzed,
all the possible loops involve routers in the same zone or back-
bone routers and routers in a peripheral zone. These consider-
ations further motivate our effort to find a router migration or-
dering that is guaranteed to be loop-free. We found slightly dif-
ferent results on the real ISP topologies we analyzed. For the
two hierarchical ISPs, none or few migration loops can arise in
the considered scenarios. This is mainly due to a sensible de-
sign of the hierarchy by the ISPs. On the other hand, we found
that huge number of problems could arise within ¢ierl. A in the
hier2flat scenario where the hierarchy was designed as de-
scribed in Section VII-A. Indeed, more than 2000 loops might
arise, involving up to 10 routers. Again, this stresses the impor-
tance of the IGP design on the migration outcome. We discuss
simple design guidelines that ease IGP migrations in Section IX.

As a second group of experiments, we ran the ordering al-
gorithms on both the real-world and the Rocketfuel topologies.
In the following, we present results for the flat2hier scenario,
but similar results and considerations hold for the other sce-
narios. Fig. 12 shows for each Rocketfuel topology the per-
centage of routers that need to be migrated in a specific order
according to each algorithm (implying that other routers can be
migrated in any order). When a point is missing, it means that
the corresponding algorithm was not able to find a loop-free
ordering for the topology. The enumeration algorithm was al-
ways able to find a loop-free ordering in all situations (including
the real-world topologies). In the worst case, the computed or-
dering involves more than 20% of the routers in the network. We
believe that finding ordering constraints for such a number of
routers is not practical at a glance. This stresses the importance
of our algorithms. The Routing Trees Heuristic, instead, found
a loop-free ordering on 9 topologies out of 11. In the remaining
two cases, the heuristic was not able to find a solution because
of contradictory (unnecessary) constraints relative to four and
six destinations, respectively. Because of the limited number of
destinations involved in contradictory constraints, we propose
to apply a per-destination ordering in these cases. Fig. 12 also
highlights the gain of relying on the greedy subprocedure, as the
heuristic could find a solution for only six topologies without it.

IEEE/ACM TRANSACTIONS ON NETWORKING

O loop enumeration algorithm
A routing trees heuristic
100 — + routing trees without greedy_run o o
38
i °
é 10 & o :
[3 A
(2] o
c o o
© 1 %
[} a
=
N o A
A
0:1 s
2 A
0.01+
T T T T T T T T T T T
2 € & E 2 2 E & € 2 €
£ s £ 5 £ £ 5 £ S g 5
N - T D = S NS = S
© = [Te] i Y] © 5 [re] 5 ® a
D ~ o < (Y] N @«
] g; — ~ - © g ® % - o

Fig. 13. Time taken to compute an ordering in flat2hier (Rocketfuel topolo-
gies). Results for other scenarios are similar.

Finally, we evaluated the time taken by our ordering algo-
rithms. Typically, time efficiency of ordering algorithms is not
critical in our approach since a loop-free router migration or-
dering can be computed before actually performing the migra-
tion. However, it becomes an important factor to support ad-
vanced abilities like computing router migration orderings that
ensures loop-free migrations even in case of network failures
(see Section VIII). Fig. 13 plots the median of the computa-
tion time taken by each algorithm over 50 separated runs. Stan-
dard deviation is always under 40 for the loop enumeration al-
gorithm, except for the two cases corresponding to topology
1239, in which standard deviation is around 450. Moreover,
the standard deviation of the time taken by the Routing Trees
Heuristic is always less than 25. Even if correct and complete,
the Loop Enumeration Algorithm is inefficient, especially for
large topologies. The heuristic is always one order of magni-
tude faster. In Fig. 13, the low absolute value of the time taken
by the Loop Enumeration Algorithm can be explained by the
relatively small size of the Rocketfuel topologies. Neverthe-
less, for the tzer1. A topology, the Loop Enumeration Algorithm
took more than 11 h to complete. To further evaluate the per-
formance degradation of the complete algorithm, we enlarged
trerl.3’s and tier2’s topologies. The operation consisted in
replicating multiple times the structure of one peripheral zone,
and attaching these additional zones to the network in order to
reach a size similar to ¢éerl.A. In such experiments, we found
that the Loop Enumeration Algorithm took several hours even
if routers can be migrated in any order, while the heuristics al-
ways took less than 1.5 min.

C. Provisioning System

We evaluated the performance of the main components of our
provisioning system by means of a case study. In the case study,
we performed a flat2hier migration of Geant, the pan-Euro-
pean research network, that we emulated by using a major router
vendor routing operative system image. In particular, we simu-
lated the migration from a flat IS-IS configuration to a hierar-
chical OSPF. Geant’s topology is publicly available [33]. It is
composed of 36 routers and 53 links. For the case study, we ar-
tificially built zones on the basis of the geographical location
of the routers and their interconnections [34]. In addition to the
backbone (12 routers), we defined three peripheral zones: the

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs

5 %X median --- naive approach
S 0 95% —— computed order
~ | 0 5%
=] o o
o 90 gooy% gogg®, Y%ogooog
o g7 a = X
% 'x,x--x.x»"’ X% ‘><r>e-><~,<,a<,><r)43(.><~><_>(_,)<»><"X‘>E
o 9 X |
o O y oo o4t
% <O, al o Oooooooo 0000 00 O'P
b ! &
5 9 o 7 B
= & \
* < x o c‘.‘
s |
& d °
8o !
o sEeiESesiseeborsneansEnEanfannnEenin
T T T T T T T T
0 5 10 15 20 25 30 35

migration steps

Fig. 14. Our system guarantees that no packet is lost during migration, while
long-lasting connectivity disruptions can happen with a naive approach.

southwest area (6 routers), the northeast area (11 routers), and
the southeast area (17 routers). We defined the IGP link weights
to be inversely proportional to the bandwidth of the links. By
executing the Loop Enumeration Algorithm (see Section V-B),
we found that eight different loops toward five different desti-
nations could arise on that topology.

To evaluate the cost of not following a proper migration
ordering, we counted the number of loops appearing in 1000
random orderings. We observed that more than 50% of the
orderings show at least one migration loop for more than
67% of the migration. To further illustrate the effect of not
following the ordering, we ran two experiments. In the first
experiment, we relied on the ordering computed by the Loop
Enumeration Algorithm, while in the second experiment, we
adopted an alphabetical order based on the name of the routers.
The second experiment mimics a naive approach in which
ordering constraints are not taken into account. To minimize
the impact of factors beyond our control (e.g., related to the
virtual environment), we repeated each experiment 50 times.
To measure traffic disruptions due to the migration, we injected
data probes (i.e., ICMP echo request) from each router toward
the five troublesome destinations. Fig. 14 reports the median,
the 5th, and the 95th percentiles of ICMP packets lost that arose
after each migration step.

The case study showed the ability of our provisioning system
to perform seamless IGP migrations. Following the ordering
computed by the Loop Enumeration Algorithm, we were able
to achieve no packet loss during the migration (the few losses
reported in Fig. 14 should be ascribed to the virtual environ-
ment). On the other hand, adopting the naive approach of mi-
grating routers in the random order, forwarding loops arose at
step 6 and are only solved at step 34. Thus, the network suffered
traffic losses during more than 80% of the migration process.

Our system also enables faster migrations than known
migration [4], [7]. The IGP LSA Listener is able to process
IGP messages in a few milliseconds. The performance of
the module is confirmed by a separate experiment we ran.
We forced the Listener to process messages from a pcap file
containing 204 LSAs (both OSPF and IS-IS). On 50 runs, the
monitor was able to decode and collect each IGP message in
about 14 ms on average and 24 ms at most. We evaluated the
performance of the IGP State Asserter on the IS-IS and the
OSPF DBs generated during the case study. The DBs contained
information about 106 directed links and 96 IP prefixes. The
IGP State Asserter took about 40 ms to assess equivalence of

LEGEND
nh flat ——
nh hier — -»

IGP link 7

Fig. 15. Link failures can change the reconfiguration ordering to be followed.
Ina flat2hier scenario on this topology, a forwarding loop can appear between
E1 and B1 if B1 is migrated before E1 and link (B1 E'3) fails.

the logical graph, routing stability, and advertisement of the
same set of prefixes in both IGPs. Even if the code could be
optimized, current performance is good, also considering that
the IGP Asserter does not need to be invoked more than once in
absence of network failures (see Section IV). On average, the
Configuration Manager took 8.84 s to push one intermediate
configuration on a router. The average size of an intermediate
configuration is around 38 lines. The entire migration process
took less than 20 min. On the contrary, a similar real-world
Geant migration took several days to be completed [7].

All the intermediate configurations that our system generated
in the case study described above are available online [34].

VIII. DEALING WITH NETWORK FAILURES

In this section, we show how to extend the algorithms de-
scribed in Section III to deal with network failures.

IGP link and node failures modify the IGP topology, which in
turn could affect both the nh function and the migration ordering
to be followed. Consequently, it may be necessary to adapt the
migration ordering to be followed when a failure has been de-
tected in order to not incur long-lasting migration loops. Con-
sider, for example, the topology in Fig. 15 and assume a flat2hier
migration. The figure shows the initial and the final nh functions
toward 52, before (left side) and after (right side) the failure of
the link between B1 and E'3. Before the failure, any reconfig-
uration ordering is loop-free since nhy,; = nhgn,). However,
after the failure of the link between B1 and E'3, nh;,;; is no
longer equal to nhgy,,1, and a migration loop can be created if
B1 is migrated before /1. To prevent forwarding loops exclu-
sively due to link failures, additional constraints need to be con-
sidered during the computation of the migration ordering. For
instance, in the example of Fig. 15, E'1 should be migrated be-
fore B1 to guarantee loop prevention even in case of failure of
link 31 — E3.

As a paradigmatic example of how to deal with network fail-
ures, we focus on single-link failures. Other kinds of failures
(e.g., node and shared risk link group failures) can be similarly
addressed. Also, note that single-link failures have been shown
to account for the majority of the failures typically occurring in
a network [35]. In the following, we refer to a router migration
ordering that prevents loop for any single-link failure in the net-
work as a single-failure compliant ordering.

For each IGP topology, we computed the additional set
of constraints for a single-link failure compliant ordering by
iteratively removing single links from the initial topology and
running the constraint generation portion of the Loop Enumer-
ation Algorithm or the Routing Trees Heuristic on the topology
we obtained. Fig. 16 shows the 50-, 99-, and 100-percentiles of
the number of additional forwarding loops that one single-link
failure can trigger. Points that do not appear on the figure

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

1000 X median

IS A 99%
o 100%

100 +

XD

of additional loops

>
x

1221,city +
1239,city -
1239,cont +
1755,city |
1755,cont +
3257,city |
3257,cont
3967,city |
3967,cont
6461,city - >
6461,cont

Fig. 16. Average number of additional forwarding loops created by a
single-link failure in flat2hier reconfiguration scenarios on Rocketfuel topolo-
gies. Missing points are equal to 0.

are meant to lay on the x-axis (i.e., no additional loop due to
single-link failures). Typically, very few single-link failures are
responsible for the vast majority of the additional forwarding
loops and ordering constraints. Observe that, in some cases
(e.g., AS1239), a single-link failure is responsible for more
than 500 additional loops. For every network of Fig. 16, we
also tried to find single-failure compliant ordering by running
the resolver part of either one of the two algorithms on the
union of all the constraints. In 9 out of the 11 studied networks,
we were able to find such a reconfiguration ordering. Also, in
one of the two remaining topologies (namely, 451239, city),
we computed a migration ordering that prevents loops for
97% of the possible single-link failures. Results on the real
ISP topologies are similar. For #ierl.2, we have been able
to find a single-failure compliant ordering, while on tzer2.1,
we were able to find an ordering preventing loops for any
single-link failure but one. Our results suggest that finding a
single-failure compliant ordering is typically possible on small
and medium-sized topologies. For huge networks, finding an
ordering is harder as the probability of generating contradic-
tory constraints is higher given the large number of links. In
this case, a per-destination ordering (see Section IV) can be
precomputed for a subset of the destinations thanks to the
efficiency of the heuristic approach.

Regarding the computation time, it took less than 2 h to com-
pute the additional set of constraints on all the topologies but
two (namely, AS1239, {city, continent}). For AS51239, {city,
continent}, it took 46 h. As mentioned earlier, time efficiency
is not critical since a single-link failure compliant ordering can
be computed offline, before performing the migration. Also, the
process is highly parallelizable as every link can be treated sep-
arately. Once the additional set of constraints was built, it took
less than 1 s in all the topologies to find out an ordering (if any).
Given the size of the problem, we did not run our algorithm on
tierl.1.1

IX. DESIGN GUIDELINES

In this section, we state simple design guidelines that make
the entire IGP migration process easier since all the router mi-
gration orderings are loop-free. In the following, we consider

Note that the Routing Tree Heuristic is not usable here as it was not able to
find an ordering in the simple case, i.e., without single-link failures.

IEEE/ACM TRANSACTIONS ON NETWORKING

the design of zones in hierarchical IGPs since the most prob-
lematic migrations involve hierarchies.

Guideline A: For each zone Z, the shortest path from each
Z B R to any destination in Z is an intrazone path.

Guideline A enables easier flat2hicr and hier2 flat mi-
grations. In fact, the guideline enforces sufficient conditions to
guarantee that the nh function does not change for any router
and any destination in any zone Z since an intrazone path is
preferred in both flat and hierarchical modes. Since no router in
Z changes its path, then nh;,it (v, @) = nhgu.(v, d) also for all
routers v € Z and d € Z. This implies that no loop can arise
during the migration. Notice that Guideline A refers only to
ZBRs since if they use intrazone paths, then non-ZBR routers
cannot use interzone paths. Establishing multiple adjacencies
(e.g., L1L2 adjacencies in IS-IS or using OSPF multiarea
adjacency extensions [36]) between ZBRs also guarantees the
nh function does not change, but backbone links could be
unnecessarily traversed in this case.

Guideline B: In each zone Z, the weight of the path from any
Z BR to any destination in Z is the same.

Practically, Guideline B can be enforced by organizing
routers in each peripheral zone Z in three layers: 1) a core
layer, containing ZB1is in Z; 2) an aggregation layer, con-
necting the access and the core layers; and 3) an access layer,
containing destinations in Z. Each ZBFR must connect to
at least one router in the aggregation layer, and each router
in the aggregation layer must connect to all destinations in
Z. In addition, all core-to-aggregation links must have the
same weight wy; similarly, all aggregation-to-access layer link
weight must be set to the same value ws (possibly we # wy).
Guideline B guarantees easy IGP migrations when route
summarization is introduced or removed. We assume that
aggregated prefixes are announced with a cost equal to the
highest weight among the destinations in the aggregate (as
in OSPF, by default [2]). In this case, both with and without
summarization, each backbone router chooses the closest ZBR
in Z as entry point for destinations in the aggregated prefix. It
is easy to check that, as a consequence, the nh function does
not change with or without summarization, hence no specific
migration ordering is needed during the migration.

X. RELATED WORK

Seamless IGP operation and maintenance have been the
focus of several previous studies. For example, several protocol
extensions have been proposed [37]-[39] to gracefully restart
a routing process. However, few research efforts have been
specifically devoted to network-wide seamless IGP migrations,
and current best practices [40], [3] are just rules of thumb that
do not apply in the general case and do not guarantee lossless
reconfiguration processes.

In [17] and [41], Raza et al. propose a theoretical frame-
work to formalize the problem of minimizing a certain disrup-
tion function (e.g., link congestion) when the link weights have
to be changed. The authors also propose a heuristic to find an
ordering in which to modify several IGP weights within a net-
work, so that the number of disruptions is minimal. Although
their work is close in spirit to ours, the migration scenarios we
analyzed cannot always be mapped to a reweighting problem.
For example, in hierarchical IGP configurations, both the weight
of a link and the zone to which it belongs are considered in

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

VANBEVER et al.: LOSSLESS MIGRATIONS OF LINK-STATE IGPs

the computation of the next-hop from a router to a destination,
and a unique link weight assignment that generates the same
next-hop for each router-to-destination pair may not exist. A
more abstract reconfiguration framework on how to transform a
feasible solution of a problem into another solution of the same
problem is also studied from a purely theoretical point of view
(e.g., [42]).

In [43], Keralapura et al. study the problem of finding the
optimal way in which devices and links can be added to a net-
work to minimize disruptions. Beyond addressing topological
changes, our techniques can be used to address several other
migration scenarios.

In [44], Chen et al. describe a tool that is able to automate
status acquisition and configuration change on network devices
according to rules specified by domain experts. The tool can
be used to automate the ships-in-the-night approach, but not to
compute a loop-free ordering. The authors also provide a rule
of thumb to avoid problems during IGP migrations, i.e., update
edge routers before the backbone ones. However, this rule does
not hold in general. For example, migrating E1 before B1 in
Fig. 1 creates a forwarding loop in a hier2 flat scenario.

In [45], Alimi et al. extend the ship-in-the-night approach
by allowing multiple configurations to run simultaneously on
a router. They also describe a commitment protocol to support
the switch between configurations without creating forwarding
loops. While the technique is promising, it cannot be exploited
on current routers.

Recently, some techniques [46], [47] have been proposed to
enable virtual routers or parts of the configuration of routers
(e.g., BGP session) to be moved from one physical device to
another. Their works differ from ours as we aim at seamlessly
changing network-wide configurations.

In[48], Reitblat et al. study the problem of consistent network
updates in “Software Defined Networking.” They propose a set
of consistency properties and show how these properties can be
preserved when changes are performed in the network. Unlike
our approach, this work only applies to logically centralized net-
works (e.g., OpenFlow).

Regarding the problem of avoiding forwarding loops in IGPs
during transient states, some previous work has also been done.
Francois et al. propose protocol extensions that allow routers
to update their FIB without creating a transient loop after a link
addition or removal [19]. Fu ef al. [20] and Shi ef al. [21] gen-
eralize the results by defining a loop-free FIB update ordering
for any change in the forwarding plane and considering traffic
congestion, respectively. However, these approaches cannot be
used effectively in practice to perform IGP migrations since
they only consider updating the FIB on a per-destination basis.
Our approach is different as it is aimed at minimizing the
number of changes applied to the routers’ configurations by
searching for a per-router migration ordering. We only apply a
per-destination ordering when no per-router migration exists.

IGP migrations could also be performed by using route
redistribution. Although new primitives have been recently
proposed [49], we believe that relying on a ships-in-the-night
approach (when possible) makes the entire migration process
easier and more manageable.

XI. CONCLUSION

Network-wide link-state IGP migrations are a source of
concerns for network operators. Unless carried with care, IGP

migrations can cause long-lasting forwarding loops, hence
significant packet losses. In this paper, we proposed a migra-
tion strategy that enables operators to perform network-wide
changes on an IGP configuration seamlessly, rapidly, and
without compromising routing stability. Our strategy relies
on effective techniques for the computation of a router mi-
gration ordering and on a provisioning system to automate
most of the process. These techniques encompass a complete,
time-consuming algorithm and a heuristic. The evaluation we
performed on several ISP topologies confirms the practical
effectiveness of both the heuristic and the provisioning system.
We also evaluated extensions of our techniques that prevent
long-lasting loops even in case of network failures. Intuitively,
link congestion due to the applied migration ordering can be
avoided with similar extensions, i.e., adding constraints to the
migration ordering research space. We plan to fully investigate
provably congestion-free migrations in future work. In the fu-
ture, we also plan to study reconfigurations involving different
families of routing protocols, like distance-vector IGPs and
path-vector policy-based routing protocols (e.g., BGP). Our
vision is that network-wide migrations could become a basic
operation enabling the seamless replacement or reconfiguration
of any network protocol.

ACKNOWLEDGMENT

The authors thank L. Cittadini, R. Bush, G. Xie, and B.
Quoitin for their help in improving the paper.

REFERENCES

[1] D. Oran, “OSI IS-IS intra-domain routing protocol,” RFC 1142, 1990.

[2] J. Moy, “OSPF version 2,” RFC 2328, 1998.

[3] G. Herrero and J. V. D. Ven, Network Mergers and Migrations: Junos
Design and Implementation. Hoboken, NJ: Wiley, 2010.

[4] V. Gill and M. Jon, “AOL backbone OSPF-ISIS migration,”
NANOG29 Presentation, 2003.

[5] North American Network Operators Group, “IPv6: IS-IS or OSPFv3,
NANOG thread,” 2008 [Online]. Available: http://mailman.nanog.org/
pipermail/nanog/2008-December/006194.html

[6] North American Network Operators Group, “OSPF -vs- ISIS,
NANOG thread,” 2005 [Online]. Available: http://www.merit.edu/
mail.archives/nanog/2005-06/msg00406.html

[7] GEANT IPv6 Task Force, “Results of the GEANT OSPF to ISIS mi-
gration,” presented at the GEANT IPv6 Task Force Meeting 2003.

[8] B. Decraene, J. L. Roux, and I. Minei, “LDP extension for inter-area
label switched paths (LSPs),” RFC 5283, 2008.

[9] T. M. Thomas, OSPF Network Design Solutions, 2nd ed. San Jose,
CA: Cisco Press, 2003.

[10] J.-L. L. Roux, J.-P. Vasseur, and J. Boyle, “Requirements for inter-area
MPLS traffic engineering,” RFC 4105, 2005.

[11] N. Leymann, B. Decraene, C. Filsfils, M. Konstantynowicz, and D.
Steinberg, “Seamless MPLS architecture,” Internet draft, 2011.

[12] P. Templin, “Small network operator—Lessons learned,” NANOG45
Presentation, 2009.

[13] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Seamless network-wide IGP migrations,” in Proc. ACM SIGCOMM,
2011, pp. 314-325.

[14] S.Tasi, P. Frangois, and S. Uhlig, “Forwarding deflection in multi-area
OSPE,” in Proc. ACM CoNEXT, 2005, pp. 254-255.

[15] G. Iannaccone, C. N. Chuah, S. Bhattacharyya, and C. Diot, “Feasi-
bility of IP restoration in a tier-1 backbone,” IEEE Netw., vol. 18, no.
2, pp. 13—19, Mar.—Apr. 2004.

[16] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing stability
of popular destinations,” in Proc. ACM SIGCOMM IMW, 2002, pp.
197-202.

[17] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful network operations,” in
Proc. IEEE INFOCOM, 2009, pp. 289-297.

[18] P. Francois and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1280-1932, Dec. 2007.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

[19] P.Francois, M. Shand, and O. Bonaventure, “Disruption-free topology
reconfiguration in OSPF networks,” in Proc. IEEE INFOCOM, 2007,
pp. 89-97.

[20] J. Fu, P. Sjodin, and G. Karlsson, “Loop-free updates of forwarding
tables,” IEEE Trans. Netw. Service Manage., vol. 5, no. 1, pp. 22-35,
Mar. 2008.

[21] L. Shi, J. Fu, and X. Fu, “Loop-free forwarding table updates with min-
imal link overflow,” in Proc. IEEE ICC, 2009, pp. 1-6.

[22] H.Ballani, P. Francis, T. Cao, and J. Wang, “Making routers last longer
with ViAggre,” in Proc. NSDI, 2009, pp. 453-466.

[23] Cisco, “IP routing protocol-independent commands,” Cisco 10S IP
Command Reference, 2006, vol. 2 of 3, Routing Protocols.

[24] Juniper Networks, Inc., “Configuring OSPF routing policy,” 2010.

[25] P.Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” Comput. Commun.
Rev., vol. 35, no. 3, pp. 33—44, 2005.

[26] C. Filsfils, P. Mohapatra, J. Bettink, P. Dharwadkar, P. D. Vriendt, Y.
Tsier, V. V. D. Schrieck, O. Bonaventure, and P. Francois, “BGP Prefix
Independent Convergence (PIC),” Cisco, San Jose, CA, Tech. Rep.,
2011.

[27] M.R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1990.

[28] C. Filsfils, P. Francois, M. Shand, B. Decraene, J. Uttaro, N. Leymann,
and M. Horneffer, “LFA applicability in SP networks,” Internet Draft,
May 2011.

[29] S. Vissicchio, L. Cittadini, M. Pizzonia, L. Vergantini, V. Mezzapesa,
and M. L. Papagni, “Beyond the best: Real-time non-invasive collec-
tion of BGP messages,” in Proc. INM/WREN, 2010, p. 9.

[30] L. Vanbever, G. Pardoen, and O. Bonaventure, “Towards validated net-
work configurations with NCGuard,” in Proc. IEEE INM, 2008, pp.
1-6.

[31] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. SIGCOMM, 2002, pp. 133—145.

[32] J. Yu, “Scalable routing design principles,” RFC 2791, 2000.

[33] GEANT, “GEANT backbone topology,” 2010 [Online]. Available:
http://www.geant.net/network/networktopology/pages/home.aspx

[34] INL, UCL, “Seamless network-wide IGP migrations,” 2011 [Online].
Available: http://inl.info.ucl.ac.be/softwares/seamless-network-migra-
tion

[35] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, Y.
Ganjali, and C. Diot, “Characterization of failures in an operational
IP backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp.
749-762, Aug. 2008.

[36] S. Mirtorabi, P. Psenak, A. Lindem, and A. Oswal, “OSPF multi-area
adjacency,” RFC 5185, 2008.

[37] A. Shaikh, R. Dube, and A. Varma, “Avoiding instability during
graceful shutdown of multiple OSPF routers,” Trans. Netw., vol. 14,
no. 3, pp. 532-542, Jun. 2006.

[38] J. Moy, P. Pillay-Esnault, and A. Lindem, “Graceful OSPF restart,”
RFC 3623, 2003.

[39] M. Shand and L. Ginsberg, “Restart signaling for IS-IS,” RFC 5306,
2008.

[40] 1. Pepelnjak, “Changing the routing protocol in your network,” 2007.

[41] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful network state migra-
tions,” IEEE/ACM Trans. Netw., vol. 19, no. 4, pp. 1097-1110, Aug.
2011.

[42] M. Kaminski, P. Medvedev, and M. Milanic, “Shortest paths between
shortest paths,” Theor. Comp. Sci., vol. 412, no. 39, pp. 5205-5210,
2011.

[43] R.Keralapura, C.-N. Chuah, and Y. Fan, “Optimal strategy for graceful
network upgrade,” in Proc. INM, 2006, pp. 83—88.

[44] X.Chen, Z. M. Mao, and J. Van der Merwe, “PACMAN: A platform for
automated and controlled network operations and configuration man-
agement,” in Proc. CONEXT, 2009, pp. 277-288.

[45] R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a net-
work management primitive,” in Proc. ACM SIGCOMM, 2008, pp.
111-122.

[46] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford,
“Virtual routers on the move: Live router migration as a network-man-
agement primitive,” in Proc. ACM SIGCOMM, 2008, pp. 231-242.

[47] E.Keller,J. Rexford, and J. Van Der Merwe, “Seamless BGP migration
with router grafting,” in Proc. NSDI, 2010, p. 16.

[48] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: Change you can believe in,” in Proc.
HotNets-X, 2011, pp. 7:1-7:6.

IEEE/ACM TRANSACTIONS ON NETWORKING

[49] F.Le, G. G. Xie, and H. Zhang, “Theory and new primitives for safely
connecting routing protocol instances,” in Proc. ACM SIGCOMM,
2010, pp. 219-230.

Laurent Vanbever (S’08) received the Master’s
degree in computer science from the Université
catholique de Louvain (UCL), Louvain-la-Neuve,
Belgium, in 2008, and is currently pursuing the
Ph.D. degree in applied sciences at the UCL. He also
holds a Master’s degree in business management
from the Solvay Brussels School of Economics and
Management, Brussels, Belgium.

His research interests focus on network manage-
ment, notably IP routing, network configuration man-
agement, and network validation.

Stefano Vissicchio received the Master’s degree in
computer science from the Roma Tre University,
Rome, Italy, in 2008, and is currently pursuing
the Ph.D. degree in applied sciences at Roma Tre
University.

His research interests are mainly focused on
network management. He is currently working
on routing configuration design, testing, and
deployment.

Cristel Pelsser received the Master’s degree in
computer science from the Facultés Universitaires
Notre-Dame de la Paix (FUNDP), Namur, Belgium,
in 2001, and the Ph.D. degree in applied sciences
from the Université catholique de Louvain (UCL),
Louvain-la-Neuve, Belgium, in 2006.

From 2007 to 2009, she held a post-doctorate po-
sition with NTT Network Service Systems Labora-
tories, Tokyo, Japan. She is now a Researcher with
Internet Initiative Japan (I1J), Tokyo, Japan. Her cur-
rent research interests are in Internet routing and pri-
vacy in distributed storage systems.

Pierre Francois (M’06) received the B.Sc. degree
in economics and management science and Master’s
degree in computer science from the Facultés Notre
Dame de la Paix, Namur, Belgium, in 2000 and
2003, respectively, and the Ph.D. degree in applied
sciences from the Université catholique de Louvain,
Louvain-la-Neuve, Belgium, in 2007.

He has been a Staff Researcher with Institute
IMDEA Networks, Madrid, Spain, since September
2011. He is active in standardization, holding an
extensive list of IETF contributions. His main topics
of interest are notably IP routing scaling and convergence, Internet governance,
Internet routing economics, and network measurements.

Dr. Francois received the IEEE INFOCOM 2007 Best Paper Award.

Olivier Bonaventure (M’92) graduated from the
University of Liege, Liege, Belgium, in 1992 and
received the Ph.D. degree in applied sciences in
1999.

He spent one year with Alcatel, Antwerp, Bel-
gium. He is now a Full Professor with the Université
catholique de Louvain, Louvain-la-Neuve, Bel-
gium, where he leads the IP Networking Lab
(http://inl.info.ucl.ac.be) and is Vice-President of
the ICTEAM Institute. He has published more than
80 papers, contributes to IETF, was granted several

patents.

Prof. Bonaventure served on the Editorial Board of the IEEE/ACM
TRANSACTIONS ON NETWORKING. He currently serves as Education Director
within ACM SIGCOMM and is a member of the CONEXT Steering Committee.
He received several awards including the IEEE INFOCOM 2005 Best Paper
Award.

